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Q1.	Can	a	theory	guide	discovery	

of	a	new	superconductor?



History	of	Serendipitous	discoveries

BCS	theoryBCS	Nobel



BCS	theory	
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Magic	ingredient	of	BCS	theory

separation	of	
scales:
!D

EF
⌧ 1



Migdal-Eliashberg	theory

• Organize	diagrams	using

• Sum	infinite	number	of	leading	diagrams.

• Result		boils	down	to	BCS	mean-field	theory	

when	

!D

EF
⌧ 1

� ⌘ V EF < 1

BCS	mean-field	theory	is	exact!!



Electronic	(non-phonon)	
Mechanisms

• Necessary	for	exotic	(non-s-wave)	SC.

• Give	up	separation	of	scales:	
EF

EF
= 1

Untractable	problem	out	of	
reach	of	BCS	mean-field	theory



Q.	Topological	Superconductor	
material?

Bulk
1D	proximity

2D	proximity?



Anderson's	proposal	

:	dope	a	quantum	spin	liquid	(QSL)



QSL

• Definition:

–No	magnetic	order	at	T=0	

–Dynamic	fluctuation

– Spin's	are	entangled.

h~s~qi = 0

h~s�~q(t)~s~q(0)i 6= 0
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Anderson's	conjecture

P.W.	Anderson,	Science	1987
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QSL	=	Resonating	
Valence	Bond	state

Exotic	SC

Doping

RVB	singlet
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Challenges	against	Anderson's	
conjecture

• Experimental:
–Hard	to	dope	
QSL

• Theoretical:
–No	controlled	
theory
–Predictions	are	
based	on	faith	
and	hope...



Q2.	Can	we	exploit	the	spin	

entangement	in	QSL	for	SC?



A	new	approach
Keep	the	QSL		and	borrow	the	spin	entanglement:

Heterostructure!
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Challenges	against	Anderson's	
conjecture

• Experimental:
–Hard	to	dope	
QSL

• Theoretical:
–No	controlled	
theory
–Predictions	are	
based	on	faith	
and	hope...



Advantages	of	the	Heterostructure	
route

• Experimental:
–Hard	to	dope	
QSL

• Theoretical:
–No	controlled	
theory
–Predictions	are	
based	on	faith	
and	hope...

• Experimental:
–Accessible	to	
current	MBE	
technology	

• Theoretical:
–Separation	of	
scales:	Jex/EF<1
–A	reliable	
prediction.



Strategy

Effective	Field	theory

A	microscopic	theory	for	a	
concrete	proposal

Persuade	experimentalists



Effective	Field	Theory



The	starting	point: Kondo-Heisenberg
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The	starting	point: Kondo

JK
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FIG. 1: (Color online) Phase diagrams for three di↵erent cases: (a) J
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are comparable. The system consists of two components: conduction electrons and
local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥ represents a
phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent case here, with di↵erent choices of
the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
SC|SL here) corresponds to the FL⇤ phase of [2,3].

Of central importance to the present paper is the fact that at low temperatures, the FL|SL phase is unstable towards

T/EF

JK/EF
Jex=0

Kondo-singlet:	Heavy	Fermi	Liquid
=	Fermi	liquid	x	Paramagnet

RKKY	interaction

The	Doniach	PD	(1977)



The	starting	point: Kondo-Heisenberg
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are comparable. The system consists of two components: conduction electrons and
local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥ represents a
phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent case here, with di↵erent choices of
the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
SC|SL here) corresponds to the FL⇤ phase of [2,3].

Of central importance to the present paper is the fact that at low temperatures, the FL|SL phase is unstable towards

The	PD	at	small	Jex large		JK

Coleman	&	Andrei	(1989),	Senthil,	Sachdev,	Vojta	(2003)



Focus	on	small	JK/EFHeterostructure:
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are comparable. The system consists of two components: conduction electrons and
local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥ represents a
phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent case here, with di↵erent choices of
the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
SC|SL here) corresponds to the FL⇤ phase of [2,3].

Of central importance to the present paper is the fact that at low temperatures, the FL|SL phase is unstable towards

J.-H.	She,	C.	Kim,	C.	Fennie,	M.	Lawler,	EAK	(2015)
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Effective	Theory	for	JK/EF<<1

• Integrate	out	spins	>>	Effective	e-e	interaction	
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spin	entanglement	imprints	onto	
the	effective	e-e	interaction

Sab(q,!) ⌘
Z

dthSa(�q, t)Sb(q, 0)ie�i!t

• "Designed"	by	the	choice	of	QSL	and	its

• Experimental	knowledge	of															
is	sufficient

Sab(q,!)



Our	first	pass	choice	of	QSL:	
quantum	spin	ice



• Elastic	neutron:	
pinch	points	
(spin-ice	like)

• Inelastic	neutron:
over	90%	weight



• No	order	down	to	
20mK

• Dynamic	fluct.	
upto	~3K

• Gapped	QSL!



Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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Figure 3 | Spin ice correlations and quantum dynamics probed with elastic and inelastic neutron scattering. (a) Inelastic Q-map with energy transfer of
0.25 meV obtained after subtracting the corresponding data at 15 K as background. The broad diffuse scattering pattern carries the symmetry of the crystal
but cannot be associated with phonon scattering, which is concentrated around strong nuclear Bragg peaks at low energies. Instead we associate it with
inelastic magnetic scattering. The fact that the scattering is wave vector dependent further links it to inter-site quantum spin dynamics. (b) Elastic Q-map

with pinch points at (002), (111), and (111). By subtracting 22 K data from 0.1 K data to cancel elastic nuclear scattering processes at Bragg peaks, we obtain
quasi-static spin correlations on the time scale of t¼ !h/dE¼ 2 ps. The black ellipses at (002) in (a) and (b) indicate the full width at half maximum
instrumental resolution. (c) Temperature-dependence of the spin ice correlation length xice (left) and the relaxation rate G (right). The black solid line denotes

1=xice¼ 1=x0þA= expðDw=TÞ with the activation energy fixed at the value of Dw¼ 1.62(3) K. The red solid line shows GðTÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0Þ2þðCkBTÞ2

q
, where

C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
and 2.0 K (open circle) after subtraction of INS data obtained at the same Q but at the elevated temperature of 15 K. A correction to the monitor rate was
applied to account for order contamination in the unfiltered incident beam. The fitting curve and the corresponding background resulting from subtraction of
magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
Supplementary Note 3. The error bars reflect one s.d. counting statistics. When error bars are not visible they are smaller than the symbol size.
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Relaxational	Dynamics	with	τ-
1=2Jex=0.17meV



Hierarchy	of	scales
• JK/EF<<1: 

perturbation	theory	on JK
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Quantum	Spin	Ice
• Jex/EF<<1: "Migdal's	thm",	

theoretically	accessible

• λ=JΚ2/JexEF<1: mean-field	
theory	is	"exact"



Mean-field	theory	
on	the	effective	model



Dominant	Pairing	Channel
• Key	properties	of	the	static	spin	structure	factor	

1. "spin-orbit"	coupling	
2. Jz=Lz+Sz conserved.
3. spin	"mirror"	symm:	Sab(q)	=	Sba(q)

->	singlet	- triplet	decoupled.

• Purely	repulsive	interaction	in	the	singlet	channel



Dominant	Pairing	Channel

1. 3He-B	type	but	2D.	
2. Overwhlemingly	dominant.



Tc

Tc ⇡ ⌧�1e�1/�

In	analogy	to	phonon	mediated	BCS	theory,

• τ-1=2Jex=0.17meV
• λ=Veff/EF=JK

2/JexEF

Not	bad	for	a	topological	superconductor



Microscopic	Proposal



Structural	Criteria	for	the	Metal

Quantum	Spin	
Ice

1. Chemical	stability
2. Lattice	matching:	A2B2O7

3. No	orphan	bonds:	(111)	
direction	



Electronic	Criteria	for	the	Metal

Quantum	Spin	
Ice

1. Simple	metal	without	ordering	possibilities.
2. Wave	function	penetration	for	coupling.
3. Odd	#	of	Fermi	surface	around	high	symmetry	

points	for	a	Topo	SC.	



Transition	Temperature
• Spin	dynamics

Interface%superconductor%

1,%Pairing%symmetry:%spin%triplet%%

3He%B%phase:%fully%gapped,%:me6reversal%invariant%

2,%Transi:on%temperature:%

QSI%relaxa:on%rate:%

Topological%with%odd%numbers%of%Fermi%surface%components%

τ-1~2Jex~0.17meV

λ~O(1)EF~300meV, JK~10meV,

• Parameters	for	our	proposal

• Tc~1.5K



Microscopic	Proposal

Non-magnetic s-electrons:	
large	overlap,	
isotropic	FS.



Band	structure	for	the	Proposal

x=0.2

• Isotropic	single	pocket	
centered	at	Γ-point



Wave	function	penetration



Full	Lattice	Model	for	the	proposal

• Effective	Continuum	theory	is	valid.	
• Ferromagnetic	fluctuation	is	dominant.	
• Overwhelmingly	dominant	p-wave	instability.



Earlier	Proposal:	Excitonic	
mechanism

• Little	(64),	Ginzburg	(70),	Bardeen	(73)

Metal

Semi-conductor

• Unstable	against	
exchange.

• Intrinsically	s-wave.



• A	new	strategy	for	
exploiting	spin	
entanglement	of	QSL.

Topological	Superconductivity	in	
Metal/Quantum-Spin-Ice	

Heterostructures	

• First	T-inv	Topo	SC.

• Huge	phase	space.

• Non-trivial,	but	tame.
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