Topological Superconductivity in Metal/Quantum-Spin-Ice Heterostructures

Eun-Ah Kim (Cornell)

UVA 11.05.2015

Q1. Can a theory guide discovery of a new superconductor?

History of Serendipitous discoveries

BCS theory

Degenerate ~free electron gas Electrons interacting with Lattice Vibration Mode

Gas of Cooper pairs

Magic ingredient of BCS theory

separation of scales:

 ω_D $\ll 1$ $\overline{E_F}$

Migdal-Eliashberg theory

• Organize diagrams using $\frac{\omega_D}{E_E} \ll 1$

- Sum infinite number of leading diagrams.
- Result boils down to BCS mean-field theory when $\lambda \equiv V E_F < 1$

BCS mean-field theory is exact!!

Electronic (non-phonon) Mechanisms

- Necessary for exotic (non-s-wave) SC.
- Give up separation of scales: $\frac{E_F}{E_F} = 1$

Untractable problem out of reach of BCS mean-field theory

Q. Topological Superconductor material?

1D proximity

2D proximity?

Anderson's proposal

: dope a quantum spin liquid (QSL)

QSL

- Definition:
 - -No magnetic order at T=0 $\langle \vec{s}_{\vec{q}} \rangle = 0$
 - Dynamic fluctuation

$$\langle \vec{s}_{-\vec{q}}(t)\vec{s}_{\vec{q}}(0)\rangle \neq 0$$

- Spin's are entangled.

Anderson's conjecture

QSL = Resonating Valence Bond state

Exotic SC

P.W. Anderson, Science 1987

Challenges against Anderson's conjecture

Experimental:
 Hard to dope
 QSL

- Theoretical:
 - -No controlled theory
 - –Predictions are based on faith and hope...

Q2. Can we exploit the spin entangement in QSL for SC?

A new approach

Keep the QSL and borrow the spin entanglement: Heterostructure!

Challenges against Anderson's conjecture

Experimental:
 Hard to dope
 QSL

- Theoretical:
 - -No controlled theory
 - –Predictions are based on faith and hope...

Advantages of the Heterostructure route

 Experimental:
 Accessible to current MBE technology • Theoretical:

-Separation of scales: $J_{ex}/E_F < 1$ -Arreliables are prediction aith

and hope...

Strategy

A microscopic theory for a concrete proposal

\checkmark

Persuade experimentalists

Effective Field Theory

The starting point: Kondo-Heisenberg

$$H_{c} = \sum_{k\alpha} \left(\frac{\hbar^{2}k^{2}}{2m} - E_{F} \right) \psi_{\alpha}^{\dagger}(k) \psi_{\alpha}(k)$$

metal
$$E_{F}$$
$$J_{K}$$
$$H_{K}(t) = J_{K}v_{cell} \sum_{a\alpha\beta} \int d^{2}r \psi_{\alpha}^{\dagger}(r) \sigma_{\alpha\beta}^{a} \psi_{\beta}(r) S_{a}(r_{\perp} = r, z = 0, t)$$

spin-fluctuating insulator
$$\int J_{ex}$$

Kondo-singlet: Heavy Fermi Liquid = Fermi liquid x Paramagnet

The starting point: Kondo-Heisenberg

Coleman & Andrei (1989), Senthil, Sachdev, Vojta (2003)

Heterostructure: Focus on small J_K/E_F

J.-H. She, C. Kim, C. Fennie, M. Lawler, EAK (2015)

Effective Theory for $J_K/E_F <<1$

$$H_{c} = \sum_{\boldsymbol{k}\alpha} \left(\frac{\hbar^{2}k^{2}}{2m} - E_{F} \right) \psi_{\alpha}^{\dagger}(\boldsymbol{k}) \psi_{\alpha}(\boldsymbol{k})$$

$$<\boldsymbol{S}_{i} \boldsymbol{S}_{j} > H_{K}(t) = J_{K} v_{\text{cell}} \sum_{\boldsymbol{a}\alpha\beta} \int d^{2}\boldsymbol{r} \psi_{\alpha}^{\dagger}(\boldsymbol{r}) \sigma_{\alpha\beta}^{a} \psi_{\beta}(\boldsymbol{r}) S_{a}(\boldsymbol{r}_{\perp} = \boldsymbol{r}, \boldsymbol{z} = 0, t)$$

spin-fluctuating insulator

Integrate out spins >> Effective e-e interaction

$$H_{\rm int}(t) = (J_K^2 v_{\rm cell}^2 / \hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{lphaeta} \psi^{\dagger}_{lpha}(\boldsymbol{r},t) \sigma^a_{lphaeta} \psi_{eta}(\boldsymbol{r},t)$$

spin entanglement imprints onto the effective e-e interaction

$$H_{\rm int}(t) = (J_K^2 v_{\rm cell}^2 / \hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{lphaeta} \psi^{\dagger}_{lpha}(\boldsymbol{r},t) \sigma^a_{lphaeta} \psi_{eta}(\boldsymbol{r},t)$$

- "Designed" by the choice of QSL and its $S_{ab}(\mathbf{q},\omega) \equiv \int dt \langle S_a(-\mathbf{q},t) S_b(\mathbf{q},0) \rangle e^{-i\omega t}$
- Experimental knowledge of $\mathcal{S}_{ab}(\mathbf{q},\omega)$ is sufficient

Our first pass choice of QSL: quantum spin ice

Received 20 Sep 2012 | Accepted 18 Apr 2013 | Published 17 Jun 2013

DOI: 10.1038/ncomms2914

Quantum fluctuations in spin-ice-like Pr₂Zr₂O₇

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

Received 20 Sep 2012 | Accepted 18 Apr 2013 | Published 17 Jun 2013

Quantum fluctuations in spin-ice-like Pr₂Zr₂O₇

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

- No order down to 20mK
- Dynamic fluct.
 upto ~3K
- Gapped QSL!

Quantum fluctuations in spin-ice-like Pr₂Zr₂O₇

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

Relaxational Dynamics with τ $^{1}=2J_{ex}=0.17meV$

Hierarchy of scales

• $J_{\rm K}/E_{\rm F} << 1$:

perturbation theory on J_{K}

• $J_{\rm ex}/E_{\rm F}{<<}1$: "Migdal's thm", theoretically accessible

• $\lambda = J_{\rm K}^2 / J_{\rm ex} E_{\rm F} < 1$: mean-field theory is "exact"

Mean-field theory on the effective model

Dominant Pairing Channel

• Key properties of the static spin structure factor

$$S_{ab}(\boldsymbol{q}) = \delta_{ab} - \left(1 - \frac{1}{1 + q^2 \xi^2}\right) \frac{q_a q_b}{q^2}$$

- 1. "spin-orbit" coupling
- 2. $J_z = L_z + S_z$ conserved.
- 3. spin "mirror" symm: S_{ab}(q) = S_{ba}(q)
 -> singlet triplet decoupled.
- Purely repulsive interaction in the singlet channel

Dominant Pairing Channel

- 1. ³He-B type but 2D.
- 2. Overwhlemingly dominant.

T_{C}

In analogy to phonon mediated BCS theory,

$$T_c \approx \tau^{-1} e^{-1/\lambda}$$

•
$$\tau^{-1} = 2J_{ex} = 0.17 \text{meV}$$

•
$$\lambda = V_{\text{eff}} / E_{\text{F}} = J_{\text{K}}^2 / J_{\text{ex}} E_{\text{F}}$$

Not bad for a topological superconductor

Microscopic Proposal

Structural Criteria for the Metal

- 1. Chemical stability
- 2. Lattice matching: $A_2B_2O_7$
- 3. No orphan bonds: (111) direction

Electronic Criteria for the Metal

- 1. Simple metal without ordering possibilities.
- 2. Wave function penetration for coupling.
- 3. Odd # of Fermi surface around high symmetry points for a Topo SC.

Transition Temperature

• Spin dynamics

$$T_{c} \sim \tau^{-1} e^{-1/\lambda}$$

$$\lambda \sim J_{K}^{2}/(E_{F}J_{ex})$$

$$-1 \sim 2J_{ex} \sim 0.17 \text{meV}$$

Parameters for our proposal

 $E_{F} \sim 300 \text{meV}, \quad J_{K} \sim 10 \text{meV}, \quad \lambda \sim O(1)$

• T_c~1.5K

Microscopic Proposal

 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

Non-magnetic

s-electrons: large overlap, isotropic FS.

Band structure for the Proposal

 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

x=0.2

 Isotropic single pocket centered at Γ-point

Wave function penetration

Full Lattice Model for the proposal

- Effective Continuum theory is valid.
- Ferromagnetic fluctuation is dominant.
- Overwhelmingly dominant p-wave instability.

Earlier Proposal: Excitonic mechanism

• Little (64), Ginzburg (70), Bardeen (73)

Metal

Semi-conductor

- Unstable against exchange.
- Intrinsically s-wave.

Topological Superconductivity in Metal/Quantum-Spin-Ice Heterostructures

- A new strategy for exploiting spin entanglement of QSL.
- Non-trivial, but tame.
- First T-inv Topo SC.
- Huge phase space.

Acknowledgements

Jian-huang She Choonghyun Kim Criag Fennie Michael Lawler

Funding

