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• Strategies: 
1) interaction, 
2) spinlessness



Strategy I

• Manipulate the pairing interaction: 
target non-phononic mechanism



Topological Superconductivity in Metal/
Quantum-Spin-Ice Heterostructures 

Jian-Huang She, Choonghyun Kim, Craig Fennie, 
Michael Lawler, E-AK (arXiv:1603.02692) 



Wanted: non-phononic 
mechanism



Wanted: non-phononic 
mechanism

Dope a Quantum spin liquid

P.W.Anderson



Wanted: non-phononic 
mechanism

Dope a Quantum spin liquid

P.W.Anderson



Wanted: non-phononic 
mechanism

RVB singlet

Dope a Quantum spin liquid

P.W.Anderson



Wanted: non-phononic 
mechanism

RVB singlet

Dope a Quantum spin liquid

P.W.Anderson



Wanted: non-phononic 
mechanism

RVB singlet Cooper pair singlet

Dope a Quantum spin liquid

P.W.Anderson



Wanted: non-phononic mechanism
Use Quantum spin liquid



Wanted: non-phononic mechanism
Use Quantum spin liquid



Wanted: non-phononic mechanism
Use Quantum spin liquid

EF

Je

x



Wanted: non-phononic mechanism
Use Quantum spin liquid

EF

Je

x

• Characteristic energy scales: 



Wanted: non-phononic mechanism
Use Quantum spin liquid

EF

Je

x

• Characteristic energy scales: 
EF, Jex, JK



Wanted: non-phononic mechanism
Use Quantum spin liquid

EF

Je

x

• Characteristic energy scales: 
EF, Jex, JK

• Perturbative limit:  
JK/ EF<<1



Wanted: non-phononic mechanism
Use Quantum spin liquid

EF

Je

x

• Characteristic energy scales: 
EF, Jex, JK

• Perturbative limit:  
JK/ EF<<1

• Spin-fermion model
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FIG. 1: (Color online) Phase diagrams for three di↵erent cases: (a) the Doniach phase diagram with J
ex

= 0, (b) J
RKKY

<
max {J

ex

, T
K

} for all coupling strength J
K

N(0), and (c) J
ex

, J
RKKY

and T
K

are comparable. With J
RKKY

= CJ2

K

/E
F

,
T
K

= E
F

e�1/J

K

N(0), there are two dimensionless parameters C ⇠ O(1) and B ⌘ E
F

/J
ex

� 1. When C < (logB)2/B, phase
diagram (b) applies; when C > (logB)2/B, phase diagram (c) applies. The system consists of two components: conduction
electrons and local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥
represents a phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Doniach (1977) 
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ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
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Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Doniach (1977) 

RKKY interaction Kondo-Singlet



Spin-fermion model for Jex+ Frustration



Spin-fermion model for Jex+ Frustration
For JRKKY~ JK2N(0) <Jex AFM order 
suppressed.



2

FL|PM&

AFM&

&&&&HFL&
(=FL×PM)&

(a)

SC×SL%

%%%%HFL%
(=FL×PM)%

FL|PM%

FL|SL%

SC|SL%

(b)

FL|PM&

FL|SL&

SC|SL&
AFM&

&&&&&&HFL&
(=FL×PM)&

(c)

FIG. 1: (Color online) Phase diagrams for three di↵erent cases: (a) the Doniach phase diagram with J
ex

= 0, (b) J
RKKY

<
max {J

ex

, T
K

} for all coupling strength J
K

N(0), and (c) J
ex

, J
RKKY

and T
K

are comparable. With J
RKKY

= CJ2

K

/E
F

,
T
K

= E
F

e�1/J

K

N(0), there are two dimensionless parameters C ⇠ O(1) and B ⌘ E
F

/J
ex

� 1. When C < (logB)2/B, phase
diagram (b) applies; when C > (logB)2/B, phase diagram (c) applies. The system consists of two components: conduction
electrons and local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥
represents a phase where the two components hybridize, forming Kondo singlets.

When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
HRKKY =

P
ij JRKKY(Ri � Rj)Si · Sj , which generically leads to magnetic ordering of the moments.

The competition of Jex, TK and JRKKY gives rise to a high dimensional phase diagram. We consider below repre-
sentative two dimensional cuts of such a high dimensional phase diagram in the plane expanded by the (normalized)
Kondo coupling JK and temperature T (see Fig.1). We consider three di↵erent cases here, as specified by the di↵erent
choices of the dominant energy scales.

When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named

Spin-fermion model for Jex+ Frustration
For JRKKY~ JK2N(0) <Jex AFM order 
suppressed.



Spin-fermion model for Jex+ Frustration
2

FL|PM&

AFM&

&&&&HFL&
(=FL×PM)&

(a)

SC×SL%

%%%%HFL%
(=FL×PM)%

FL|PM%

FL|SL%

SC|SL%

(b)

FL|PM&

FL|SL&

SC|SL&
AFM&

&&&&&&HFL&
(=FL×PM)&

(c)

FIG. 1: (Color online) Phase diagrams for three di↵erent cases: (a) the Doniach phase diagram with J
ex

= 0, (b) J
RKKY

<
max {J

ex

, T
K

} for all coupling strength J
K

N(0), and (c) J
ex

, J
RKKY

and T
K

are comparable. With J
RKKY

= CJ2

K

/E
F

,
T
K

= E
F

e�1/J

K

N(0), there are two dimensionless parameters C ⇠ O(1) and B ⌘ E
F

/J
ex

� 1. When C < (logB)2/B, phase
diagram (b) applies; when C > (logB)2/B, phase diagram (c) applies. The system consists of two components: conduction
electrons and local moments. Here | represents a phase where the two components coexist but are e↵ectively decoupled, and ⇥
represents a phase where the two components hybridize, forming Kondo singlets.
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phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
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When the local moments form a lattice, the corresponding RKKY interactions are encoded in the Hamiltonian
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When the spin exchange interaction is small, i.e. Jex ⌧ JRKKY and Jex ⌧ TK , we recover the original Doniach
phase diagram [6] (Fig.1a). At high temperatures, the local moments are incoherent, residing in a paramagnetic (PM)
state, decoupled from the conduction electrons which form a Fermi liquid (FL). Coherent many body states develop
as one lowers the temperature. In the parameter region where the Kondo coupling JK is small, one has JRKKY > TK ,
and the RKKY interaction dominates. The system develops long range magnetic order, e.g. antiferromagnetic (AFM)
order. We note that since the spin lattice is frustrated, RKKY interaction can also lead to more complicated magnetic
ordering patterns. In the parameter region where the Kondo coupling JK is large, one has TK > JRKKY, and the
Kondo e↵ect dominates. The conduction electrons and the local moments form Kondo singlets, and the system is in a
heavy Fermi liquid (HFL) state with a large Fermi surface, which counts both the conduction electrons and the local
moments.

Of more relevance to the present paper is the case where the RKKY interaction is never the dominant energy scale,
i.e. JRKKY < Jex for small JK and JRKKY < TK for large JK . The corresponding phase diagram has been studied
in [2,3] (see Fig.1b). At low temperatures, the phase diagram is determined by the competition between Jex and
TK . For large Kondo coupling JK , where TK is the dominant energy scale, the system is in the HFL state as in the
previous case. For JK small, where Jex is the dominant energy scale, the local moments are in a spin liquid (SL)
state, decoupled from the conduction electrons. Such a coexisting and decoupled FL and SL phase (hence named
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Supplementary Figure S 4: Temperature (T ) dependent specific heat and entropy for
Pr2Zr2O7. (a) T dependence of the specific heat. Denote by CP , CL, and CCEF the total
specific heat, the lattice specific heat, and the crystalline electric field contribution to the spe-
cific heat, respectively. CMN is defined as CMN ≡ CM + CN = CP − CL − CCEF. CM is the
magnetic specific heat. CN is the Schottky-like specific heat that fits CMN below T ≈ 0.2 K
(supplementary note 4). (b) T dependence of the corresponding entropy obtained through inte-
gration from 70 mK. Shifted with respect to each other by the Pauling entropy, the two dashed
black lines denote ∆S for a two level system (R ln 2) and for spin ice.
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Effective Continuum Theory

• Integrate out spins >> Effective e-e interaction 



substrate in isolation should encodes the e↵ect of geometric frustrations and the exchange

energy scale J
ex

to account for the measured dynamic spin structure factor of the QSI.

If the wavefunction of the metallic electrons penetrates into the insulating substrate, the

dynamic degrees of freedom of each side will couple at the interface through the coupling

term H
K

. Although the well-known non-Kramers doublet nature of the moments on Pr3+19

gives rise to additional coupling between Pr quadrupole moments and conduction electron

density,26,27 we will focus on the Kondo-type coupling in this paper for simplicity as we found

the additional coupling to not a↵ect the results in a qualitative manner (see Supplementary

Material SMXXX). Specifically, we consider a uniform and isotropic Kondo-like coupling7

between coarse-grained operator S
a

(r, t) representing the density of the spin a-component

(a = x, y, z).28,29

H
K

= J
K

v
cell

X

a↵�

Z
d2r †

↵

(r)�a

↵�

 
�

(r)S
a

(r? = r, z = 0), (2)

where �a denotes the Pauli matrix with a = x, y, z, v
cell

the volume of the unit cell. Here

we set z = 0 at the interface. For the rest of this paper, we will focus on the weak-

coupling region of the phase space J
K

N(0) ⌧ 1 and the instability of FL|QSL phase against

superconductivity that would lead to the targeted SC|QSL phase of Fig.1 D (see also SM

Figure S1).

7 The leading e↵ect of the coupling (2) on the local moment physics in the regime

of interest is to induce the RKKY interaction that can drive ordering. However, for a

gapped spin liquid like Pr
2

Zr
2

O
7

, the QSL state would be stable as long as J
RKKY

< J
ex

.

Hence we can “integrate out” the local moments and focus on the e↵ect of the interaction

induced on the metallic layer. Upon integrating out the spin degree of freedom S
a

, new

e↵ective interactions between spin densities of the metallic layer that depends on the dynamic

correlation functions of the QSI substrate are generated. If hS
a

(r, t)i 6= 0, the leading e↵ect of

the coupling would have been to re-arrange the Fermi-surface of the metallic layer. However

since hS
a

(r, t)i = 0 for a QSL, the leading induced interaction is

H
int

(t) = �(J2

K

v2
cell

/2})
X

ab

Z
dt0

Z
d2rd2r0s

a

(r, t)hS
a

(r, 0, t)S
b

(r0, 0, t0)is
b

(r0, t0), (3)

where s
a

(r, t) =
P

↵�

 †
↵

(r, t)�a

↵�

 
�

(r, t) for a = x, y, z is the conduction electron spin

density. This induced e↵ective interaction with the characteristic energy scale V ⇠ J2

K

/J
ex

for the itinerant electrons can be viewed as the counterpart of RKKY interaction. Notice
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• Dimensionless ratio:  

the dynamical entanglement between spins of QSI is imprinted on the e↵ective interaction

between itinerant electrons in Eq.(3). This implies that we can “manipulate” the interaction

between itinerant electrons through the choice of the QSL with its characteristic dynamic

spin-spin correlation function hS
a

(r, 0, t)S
b

(r0, 0, t0)i.

8 Now the low energy e↵ective theory defined by Eq.(1) and Eq.(3) describes an inter-

acting electron problem, which is generically hard to solve. To make the problem worse, the

e↵ective interaction Eq. (3) is highly structured as a result of the quantum entanglement

between spins of the QSI substrate. However, we can make non-trivial progress building on

the modern renormalization group based perspectives and the classic justification for the

mean-field theory treatment in the BCS theory. Firstly, we know from the renormalization

group theory that the only weak-coupling instability of a Fermi liquid in the absence of

Fermi-surface nesting is the superconducting instability.17 Secondly, armed with the separa-

tion of scale !
SF

/E
F

⌧ 1, we expect the mean-field theory treatment in the pairing channel

to yield a reliable prediction for the interacting fermion probelm when the interaction is

weak, i.e., � ⇠ N(0)V ⇠ J2

K

N(0)/J
ex

< 1. All together the problem at hand promises an

opportunity to predict an exotic superconductor whose pairing channel is determined by

momentum dependent interaction of Eq. (3), in a theoretically reliable approach.
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Criteria for Metal
• Structural
‣ Lattice match

➡A2B2O7

‣ No orphan bonds

• Electronic
‣ Simple isotropic 

Fermi surface
‣ Wave function 

penetration
‣ Odd-# FS around 

high symmetry 
points
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Non-magnetic s-electrons: 
large overlap, 
isotropic FS.
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Band structure for the 
Proposal

x=0.2

• Isotropic single 
pocket centered at Γ-
point
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Earlier Proposal: Excitonic 
mechanism

Little (64), Ginzburg (70), Bardeen 
(73)

Metal

Semi-conductor

• Unstable against 
exchange.

• Intrinsically s-wave.
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• Topological  
superconductor riding 
on QSL

Topological Superconductivity in 
Metal/Quantum-Spin-Ice 

Heterostructures 

• Selection Rule Dictated 
Intrinsic Topo SC.

• Substantial phase 
space.
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structure



Topological superconductivity 
in group-VI TMDs

Yi-Ting Hsu, Abolhassan Vaezi, E-AK (in preparation)
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Spinless fermion via real space 
splitting

• Proximity 
induce topo 
SC

Fu & Kane, PRL (2008)
Experiments: Wang et al Science 336, 52 (2012)
Xu et al, Nat.Phys 10, 943 (2014)
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Monolayer group VI TMD's
MoS2, WS2, MoSe2, WSe2

• Non-centro symmetric

➡ Direct Gap ~2eV
➡ Dresselhaus spin-orbit
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Band-selective spin-splitting
• Partially filled crystal-field-split d-bands

- Conduction band
- Valence band

: lz=0

: lz= ∓1

• Spin-orbit coupling  

150~460meV



Confirmation of the band 
structure

Iwasa group N. Nano (2014)
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k-space spin-split FS?
p-doped group VI- TMD!
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Juice for superconductivity?

• n-doped 
J.T.Ye et al. (Science 2012)

• d electrons => expect correlation effects 



p-doped TMD

Moderate correlation (d-electron)

 k-space spin-split Fermi surfaces
+



p-doped TMD

Topological SC?

Yi-Ting Hsu Abolhassan Vaezi

Moderate correlation (d-electron)

 k-space spin-split Fermi surfaces
+

Mark Fischer
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Model
• Kinetic 
term

• Repulsive interaction term
Band-basis Spin-basis



Superconductivity out of 
repulsive interaction? 



Superconductivity out of 
repulsive interaction? 

• Kohn-Luttiger: singularity in scattering 
amplitude �(~q)



Superconductivity out of 
repulsive interaction? 

• Kohn-Luttiger: singularity in scattering 
amplitude �(~q) (Kohn &Luttinger 1965)



Superconductivity out of 
repulsive interaction? 

• Kohn-Luttiger: singularity in scattering 
amplitude �(~q)
➡Non-s wave

(Kohn &Luttinger 1965)



Superconductivity out of 
repulsive interaction? 

• Kohn-Luttiger: singularity in scattering 
amplitude �(~q)

• Two-step RG formulation
: Fe-based SC, doped graphene, SrRuO

➡Non-s wave

(Kohn &Luttinger 1965)



Superconductivity out of 
repulsive interaction? 

• Kohn-Luttiger: singularity in scattering 
amplitude �(~q)

• Two-step RG formulation
: Fe-based SC, doped graphene, SrRuO

➡Non-s wave

(Kohn &Luttinger 1965)

Chubukov & Nandkishore, Raghu & Kivelson  (2008 - 2012)



Two-step RG on p-doped TMD 
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Step I: W -> Λ0
c†d†

• gintra,0 and ginter,0 at two-loop

g(0)inter(~q, ~q
0) = U + U3finter(~q, ~q

0)

g(0)intra(~q, ~q
0) = U3fintra(~q, ~q

0)

• f’s <0 -> g(0)’s<0 in anisotropic channel
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Two possibilities
• Intra-pocket p+ip • Inter-pocket p’wave

-T-breaking -Modulated
- C=2 -C=\pm 1 per pocket
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