

Eun-Ah Kim (Cornell)

Bulk

1D proximity

Bulk

1D proximity

2D proximity?

- 2D topological SC
 - odd-parity SC of spinless fermions
 - Majorana bound state

- 2D topological SC
 - odd-parity SC of spinless fermions
 - Majorana bound state
- Strategies:
- 1) interaction,
- 2) spinlessness

Strategy I

 Manipulate the pairing interaction: target non-phononic mechanism

Topological Superconductivity in Metal/ Quantum-Spin-Ice Heterostructures

Jian-Huang She, Choonghyun Kim, Craig Fennie, Michael Lawler, E-AK (in preparation, 2015)

P.W.Anderson

P.W.Anderson

P.W.Anderson

P.W.Anderson

P.W.Anderson

Use Quantum spin liquid

Use Quantum spin liquid

Use Quantum spin liquid

 E_{F}

Jex

Use Quantum spin liquid

Characteristic energy scales:

J_{ex}

Use Quantum spin liquid

• Characteristic energy scales:

$$E_{F,} J_{ex,} J_{K}$$

J_{ex}

Use Quantum spin liquid

• Characteristic energy scales:

$$E_{F, J_{ex, J_K}}$$

• Perturbative limit:

$$J_{\kappa}/E_{\epsilon} << 1$$

Use Quantum spin liquid

• Characteristic energy scales:

$$E_{F,} J_{ex,} J_{K}$$

• Perturbative limit:

$$J_{K}/E_{F} << 1$$

Spin-fermion model

Spin-fermion model for J_{ex}=0

Spin-fermion model for $J_{ex}=0$

Spin-fermion model for J_{ex}=0

Kondo-Singlet

Doniach (1977)

Spin-fermion model for J_{ex}=0

RKKY interaction

Kondo-Singlet

Doniach (1977)

For $J_{RKKY}^{2}N(0) < J_{ex}AFM$ order suppressed.

For $J_{RKKY}^{2} J_{K}^{2}N(0) < J_{ex}$ AFM order suppressed.

For $J_{RKKY}^{2} J_{K}^{2}N(0) < J_{ex} AFM$ order suppressed.

For $J_{RKKY}^{2} J_{K}^{2}N(0) < J_{ex} AFM$ order suppressed.

Kondo-Singlet + RVB singlet +Cooper pair singlet

Coleman & Andrei (XXXX)

Senthil, Vojta, Sachdev (XXXX)

For $J_{RKKY}^{2} J_{K}^{2} N(0) < J_{ex} AFM$ order suppressed.

Superconductor "riding" on QSL

Kondo-Singlet + RVB singlet +Cooper pair singlet

Coleman & Andrei (XXXX)

Senthil, Vojta, Sachdev (XXXX)

Simple isotropic metal

Simple isotropic metal

Simple isotropic metal

- 1. <S>=0
- 2. Dynamic spin fluctuation <S_iS_i>

How to predictively materialize SC|QSL?

Simple isotropic metal

- 1. <S>=0
- 2. Dynamic spin fluctuation $\langle S_i S_j \rangle$
- 3. Gapped spectrum

How to predictively materialize SC|QSL?

Simple isotropic metal

- 1. <S>=0
- 2. Dynamic spin fluctuation <S_iS_i>
- 3. Gapped spectrum
- 4. "Simple"

How to predictively materialize SC|QSL?

Simple isotropic metal

- 1. <S>=0
- 2. Dynamic spin fluctuation $\langle S_i S_j \rangle$
- 3. Gapped spectrum
- 4. "Simple"
- Quantum Spin Ice

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

 Elastic neutron: pinch points (spin-ice like)

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

 Elastic neutron: pinch points (spin-ice like)

 Inelastic neutron: over 90% weight

K. Kimura¹, S. Nakatsuji^{1,2}, J.-J. Wen³, C. Broholm^{3,4,5}, M.B. Stone⁵, E. Nishibori⁶ & H. Sawa⁶

 No order down to 20mK

- No order down to 20mK
- Gapped quantum paramagnet

- No order down to 20mK
- Gapped quantum paramagnet ω_s =0.17meV

- No order down to 20mK
- Gapped quantum paramagnet ω_s =0.17meV
- Inelastic spectra peaked at Q=0

$$H_c = \sum_{m{k}lpha} \left(rac{\hbar^2 k^2}{2m} - E_F
ight) \psi_lpha^\dagger(m{k}) \psi_lpha(m{k})$$

$$H_c = \sum_{m{k}lpha} \left(rac{\hbar^2 k^2}{2m} - E_F
ight) \psi_lpha^\dagger(m{k}) \psi_lpha(m{k})$$

$$H_K(t) = J_K v_{
m cell} \sum_{alphaeta} \int d^2 m{r} \psi^\dagger_lpha(m{r}) \sigma^a_{lphaeta} \psi_eta(m{r}) S_a(m{r}_ot = m{r}, z = 0, t)$$

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\boldsymbol{r},t) \sigma_{\alpha\beta}^a \psi_{\beta}(\boldsymbol{r},t)$$

$$H_{\text{int}}(t) = -\left(J_K^2 v_{\text{cell}}^2 / 2\hbar\right) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$s_a(\boldsymbol{r},t) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\boldsymbol{r},t) \sigma_{\alpha\beta}^a \psi_{\beta}(\boldsymbol{r},t)$$

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: $\omega_s/E_F << 1$
 - → "Migdal theorem"

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: $\omega_s/E_F << 1$
 - → "Migdal theorem"
- Dimensionless ratio:

$$\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$$

$$H_{\rm int}(t) = -(J_K^2 v_{\rm cell}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: $\omega_s/E_F << 1$
 - → "Migdal theorem"
- Dimensionless ratio: $\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$

$$\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$$

 Full problem ≈ solving the BCS mean-field theory

$$H_{\text{int}}(t) = -(J_K^2 v_{\text{cell}}^2 / 2\hbar) \sum_{ab} \int dt' \int d^2 \boldsymbol{r} d^2 \boldsymbol{r}' s_a(\boldsymbol{r}, t) \langle S_a(\boldsymbol{r}, 0, t) S_b(\boldsymbol{r}', 0, t') \rangle s_b(\boldsymbol{r}', t')$$

- Separation of scale: $\omega_s/E_F << 1$
 - → "Migdal theorem"
- Dimensionless ratio: $\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$

$$\lambda \sim N(0)V \sim J_K^2 N(0)/J_{\rm ex} < 1$$

 Full problem ≈ solving the BCS mean-field theory

$$T_c \sim \omega_s e^{-1/\lambda}$$

Energy integrated spin structure factor

Energy integrated spin structure factor

$$S_{ab}(\boldsymbol{q}) = \delta_{ab} - \left(1 - \frac{1}{1 + q^2 \xi^2}\right) \frac{q_a q_b}{q^2}$$

Energy integrated spin structure factor

$$S_{ab}(\boldsymbol{q}) = \delta_{ab} - \left(1 - \frac{1}{1 + q^2 \xi^2}\right) \frac{q_a q_b}{q^2}$$

1. SO(3)xSU(2) reduced to U(1)

Energy integrated spin structure factor

$$S_{ab}(\boldsymbol{q}) = \delta_{ab} - \left(1 - \frac{1}{1 + q^2 \xi^2}\right) \frac{q_a q_b}{q^2}$$

- 1. SO(3)xSU(2) reduced to U(1)
- 2. Quantum #'s: J₂=L₂+S₂ & Parity

Energy integrated spin structure factor

$$S_{ab}(\boldsymbol{q}) = \delta_{ab} - \left(1 - \frac{1}{1 + q^2 \xi^2}\right) \frac{q_a q_b}{q^2}$$

- 1. SO(3)xSU(2) reduced to U(1)
- 2. Quantum #'s: $J_z = L_z + S_z$ & Parity
- 3. Resulting interaction suppresses even-parity states

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0\\ 0 & k_x + ik_y \end{pmatrix}$$

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0 \\ 0 & k_x + ik_y \end{pmatrix}$$
 ~ He3-B

$$\hat{\Delta}_{j_z=0}^{(-)} \sim egin{pmatrix} k_x - ik_y & 0 \ 0 & k_x + ik_y \end{pmatrix}$$
 ~ He3-B

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0 \\ 0 & k_x + ik_y \end{pmatrix}$$
 ~ He3-B

$$\hat{\Delta}_{j_z=\pm 1}^{(-)} \sim \begin{pmatrix} 0 & k_x \pm ik_y \\ k_x \pm ik_y & 0 \end{pmatrix}$$

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0 \\ 0 & k_x + ik_y \end{pmatrix}$$
 ~ He3-B

$$\hat{\Delta}_{j_z=\pm 1}^{(-)}\sim egin{pmatrix} 0 & k_x\pm ik_y \ k_x\pm ik_y & 0 \end{pmatrix}$$
 ~ He3-A

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0\\ 0 & k_x + ik_y \end{pmatrix}$$

~ He3-B

$$\hat{\Delta}_{j_z=\pm 1}^{(-)} \sim \begin{pmatrix} 0 & k_x \pm ik_y \\ k_x \pm ik_y & 0 \end{pmatrix}$$

~ He3-A

$$\hat{\Delta}_{j_z=0}^{(-)} \sim \begin{pmatrix} k_x - ik_y & 0\\ 0 & k_x + ik_y \end{pmatrix}$$

$$\hat{\Delta}_{j_z=\pm 1}^{(-)} \sim \begin{pmatrix} 0 & k_x \pm ik_y \\ k_x \pm ik_y & 0 \end{pmatrix}$$

~ He3-A

Can we persuade a material synthesis person?

Criteria for Metal

Criteria for Metal

- Structural
 - Lattice match
 - \rightarrow A₂B₂O₇
 - No orphan bonds

Criteria for Metal

- Structural
 - Lattice match
 - \rightarrow A₂B₂O₇
 - No orphan bonds

- Electronic
 - Simple isotropicFermi surface
 - Wave function penetration
 - Odd-# FS around high symmetry points

$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

Non-magnetic

$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

Non-magnetic

s-electrons: large overlap, isotropic FS.

Band structure for the Proposal

 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

$$x = 0.2$$

Band structure for the Proposal

 $Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$ (111)

x = 0.2

Band structure for the Proposal

$$Pr_2Zr_2O_7/Y_2Sn_{2-x}Sb_xO_7$$
 (111)

$$x = 0.2$$

 Isotropic single pocket centered at Γ-point

Wave function penetration

Wave function penetration

Metal

Semi-conductor

Metal

Semi-conductor

Unstable against exchange.

Metal

Semi-conductor

- Unstable against exchange.
- Intrinsically s-wave.

Little (64), Ginzburg (70), Bardeen (73)

 Topological superconductor riding on QSL

- Topological superconductor riding on QSL
- First T-inv Topo SC.

- Topological superconductor riding on QSL
- First T-inv Topo SC.
- Substantial phase space.

Acknowledgements

Jian-huang She

Choonghyun Kim Criag Fennie

Michael Lawler

Funding: DOE, CCMR (NSF)

Strategy II

Manipulate the band structure

Topological superconductivity in group-VI TMDs

Yi-Ting Hsu, Abolhassan Vaezi, E-AK (in preparation)

Spin-degenerate Fermi surface

Spin-degenerate Fermi surface

Singlet superconductor

Spin-degenerate Fermi surface

Singlet superconductor

Q. What if the band structure is spin-split?

• TI surface states

TI surface states

Proximity induce topo SC

TI surface states

Proximity induce topo SC

Fu & Kane, PRL (2008)

Experiments: Wang et al Science 336, 52 (2012)

Xu et al, Nat. Phys 10, 943 (2014)

Spinless fermion via k-space splitting?

Spinless fermion via k-space splitting?

Monolayer group VI TMD's

- Non-centro symmetric
- → Direct Gap ~2eV
- → Dresselhaus spin-orbit

Monolayer group VI TMD's

MoS₂, WS₂, MoSe₂, WSe₂

- Non-centro symmetric
- → Direct Gap ~2eV
- → Dresselhaus spin-orbit

Monolayer group VI TMD's

MoS₂, WS₂, MoSe₂, WSe₂

- Non-centro symmetric
- Direct Gap ~2eV
- Dresselhaus spin-orbit

Partially filled crystal-field-split d-bands

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle: l_{\rm z}=0$

- Partially filled crystal-field-split d-bands

 - Conduction band $|d_{z^2}\rangle: l_{\rm z}=0$ Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle\mp i|d_{xy}\rangle): l_{\rm z}=\mp 1$

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle:l_{
 m z}=0$
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}
 angle\mp i|d_{xy}
 angle):l_{\mathbf{z}}=\mp 1$
- Spin-orbit coupling $ec{L}$. $ec{S}$

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle:l_{
 m z}=0$
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle\mp i|d_{xy}\rangle):l_{\mathbf{z}}=\mp 1$
- Spin-orbit coupling $ec{L}$. $ec{S}$

- Partially filled crystal-field-split d-bands
 - Conduction band $|d_{z^2}\rangle:l_{
 m z}=0$
 - Valence band $\frac{1}{\sqrt{2}}(|d_{x^2-y^2}\rangle\mp i|d_{xy}\rangle):l_{\mathbf{z}}=\mp 1$
- Spin-orbit coupling $ec{L}$. $ec{S}$

150~460meV

Iwasa group N. Nano (2014)

k-space spin-split FS?

k-space spin-split FS?

p-doped group VI- TMD!

Juice for superconductivity?

Juice for superconductivity?

d electrons => expect correlation effects

Juice for superconductivity?

d electrons => expect correlation effects

n-doped TMD's
 J.T.Ye et al. (Science 2012)

p-doped TMD

k-space spin-split Fermi surfaces

Moderate correlation (d-electron)

p-doped TMD

k-space spin-split Fermi surfaces

Moderate correlation (d-electron)

Topological SC?

Yi-Ting Hsu

Mark Fischer

Abolhassan Vaezi

Kinetic term

$$H_0(\vec{q}) = at(\tau q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + \frac{\Delta}{2} \hat{\sigma_z} - \lambda \tau \hat{s_z} \otimes \frac{\hat{\sigma_z} - 1}{2}$$

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic term

$$H_0(ec{q}) = at(au q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + rac{\Delta}{2} \hat{\sigma_z} - \lambda au \hat{s_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic term

$$H_0(ec{q}) = at(au q_x \hat{\sigma_x} + q_y \hat{\sigma_y}) + rac{\Delta}{2} \hat{\sigma_z} - \lambda au \hat{s_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

Band-basis

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic term

$$H_0(\vec{q}) = at(au q_x\hat{\sigma_x} + q_y\hat{\sigma_y}) + rac{\Delta}{2}\hat{\sigma_z} - \lambda \hat{\sigma_z} \otimes rac{\hat{\sigma_z} - 1}{2}$$

Band-basis

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

Kinetic term

$$H_0(\vec{q}) = at(au q_x\hat{\hat{\sigma_x}} + q_y\hat{\hat{\sigma_y}}) + rac{\Delta}{2}\hat{\hat{\sigma_z}} - \lambda \hat{\hat{\sigma_z}} \otimes rac{\hat{\hat{\sigma_z}} - 1}{2}$$

Band-basis

Spin-basis

$$H'(W) = \sum_{i} U n_{i,\uparrow} n_{i,\downarrow}$$

•Kohn-Luttiger: singularity in scattering amplitude $\Gamma(\vec{q})$

•Kohn-Luttiger: singularity in scattering amplitude $\Gamma(\vec{q})$ \rightarrow

Kohn-Luttiger: singularity in scattering

amplitude $\Gamma(\vec{q})$

Non-s wave

•Kohn-Luttiger: singularity in scattering amplitude $\Gamma(\vec{q})$ \rightarrow

→Non-s wave

- Two-step RG formulation
 - : Fe-based SC, doped graphene, SrRuO

•Kohn-Luttiger: singularity in scattering amplitude $\Gamma(\vec{q})$ \rightarrow

→Non-s wave

(Kohn & Luttinger 1965)

- Two-step RG formulation
 - : Fe-based SC, doped graphene, SrRuO

Chubukov & Nandkishore, Raghu & Kivelson (2008 - 2012)

Two-step RG on p-doped TMD

• At scale Λ_0 : Effective model

- At scale W: Microscopic model
- At scale Λ_0 : Effective model

- At scale W: Microscopic model
- At scale Λ_0 : Effective model

$$egin{aligned} H_{eff}'(\Lambda_0) &= \sum_{ec{q},ec{q}'}' g_{ ext{inter}}^{(0)}(ec{q},ec{q}') c_{ec{q}'}^\dagger d_{-ec{q}'}^\dagger d_{-ec{q}'} c_{ec{q}} \ &+ g_{ ext{intra}}^{(0)}(ec{q},ec{q}') d_{ec{q}'}^\dagger d_{-ec{q}'}^\dagger d_{-ec{q}'} d_{-ec{q}} d_{ec{q}} + (c \leftrightarrow d). \end{aligned}$$

Step I: W $\rightarrow \Lambda_0$

•gintra,0 and ginter,0 at two-loop

g_{intra,0} and g_{inter,0} at two-loop

•gintra,0 and ginter,0 at two-loop

$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$

•gintra,0 and ginter,0 at two-loop

$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$

$$g_{intra}^{(0)}(\vec{q}, \vec{q}') = U^3 f_{intra}(\vec{q}, \vec{q}')$$

Step I: W -> Λ_0

g_{intra,0} and g_{inter,0} at two-loop

$$g_{inter}^{(0)}(\vec{q}, \vec{q}') = U + U^3 f_{inter}(\vec{q}, \vec{q}')$$

 $g_{intra}^{(0)}(\vec{q}, \vec{q}') = U^3 f_{intra}(\vec{q}, \vec{q}')$

•f's $<0 -> g^{(0)}$'s <0 in anisotropic channel

Step I: $\Lambda_0 \rightarrow 0$

RG flow

• Divergence if $\lambda^{(0)} < 0$

Step I: $\Lambda_0 \rightarrow 0$

RG flow

$$\frac{d\lambda}{dy} = -\lambda^2$$

$$y \equiv \nu_0 \text{Log}(\Lambda_0/\text{E})$$

• Divergence if $\lambda^{(0)} < 0$

Step I: $\Lambda_0 \rightarrow 0$

RG flow

$$\frac{d\lambda}{dy} = -\lambda^2$$

$$\lambda(y) = \frac{\lambda^{(0)}}{1 + \lambda^{(0)}y}$$

$$y \equiv \nu_0 \text{Log}(\Lambda_0/\text{E})$$

• Divergence if $\lambda^{(0)} < 0$

Intra-pocket p+ip

Intra-pocket p+ip

Inter-pocket p'wave

Intra-pocket p+ip

Inter-pocket p'wave

-T-breaking

Intra-pocket p+ip

Inter-pocket p'wave

-T-breaking

-Analogous to Sr2RuO4

Intra-pocket p+ip

Inter-pocket p'wave

-T-breaking

-Modulated

-Analogous to Sr2RuO4

Intra-pocket p+ip

Inter-pocket p'wave

- -T-breaking
- -C=1
- -Analogous to Sr2RuO4

-Modulated

Intra-pocket p+ip

Inter-pocket p'wave

- -T-breaking
- -C=1
- -Analogous to Sr2RuO4

- -Modulated
- -C=\pm 1 per pocket

Designing 2D topological SC's

Control interaction

k-space spin split TMD

Designing 2D topological SC's

Control interaction

quantum spin liquid

