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Despite its seemingly simple composition and structure, the pairing mechanism of FeSe remains an open
problem due to several striking phenomena. Among them are nematic order without magnetic order,
nodeless gap and unusual inelastic neutron spectra with a broad continuum, and gap anisotropy consistent
with orbital selection of unknown origin. Here we propose a microscopic description of a nematic quantum
spin liquid that reproduces key features of neutron spectra. We then study how the spin fluctuations of the
local moments lead to pairing within a spin-fermion model. We find the resulting superconducting order
parameter to be nodeless s� d wave within each domain. Further we show that orbital dependent Kondo-
like coupling can readily capture observed gap anisotropy. Our prediction calls for inelastic neutron
scattering in a detwinned sample.
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The pairing mechanism and gap symmetry of bulk [1–3]
and single layer [4] FeSe is an open issue that inhibits an
overarching understanding of iron-based superconductors.
Although a spin-fluctuation mediated pairing scenario is a
broadly accepted mechanism in iron-based superconduc-
tors [5,6], much debate continues to focus around two
distinct perspectives: weak and strong coupling. Weak-
coupling approaches are sensitive to the band structure and
generally predict dominantly ðπ; 0Þ, ð0; πÞ spin density
wave fluctuations that couple hole pockets to electron
pockets in all Fe pnictides as well as in bulk FeSe [7].
Strong-coupling approaches take strong electron-electron
correlations to generate quasilocalized moments that would
interact with itinerant carriers.
FeSe presents new challenges to both perspectives,

including explaining its nematic order [8] [see Fig. 1(a)],
absence ofmagnetism, gapped but active spin fluctuations at
ðπ; πÞ in addition to ðπ; 0Þ [9], and nodeless superconducting
gap. There has been much effort to address these issues.
RPA-based weak-coupling approaches focused on implica-
tions of assumed nematic order [10,11]. Renormalization
group approaches found the effective interactions promoting
spin density wave to be also promoting orbital order
[7,12,13]. Approaches focusing on sizable local moments
[14] led to proposals of quadrupolar order accompanying
nematic order [15,16] and the proposal of a quasi-one-
dimensional quantum paramagnet state [17] of Affleck-
Kennedy-Lieb-Tasaki (AKLT) [18] type. Nevertheless,
strikingly unique inelastic neutron spectra (INS) of FeSe
evade the approaches so far one way or another.
The absence of the stripe order in FeSe has been

attributed to the notion of frustration [17,19]. Indeed
FeSe is close to a classic situation for frustrated magnets

in the much studied J1-J2 model [20,21] [see Fig. 1(b)].
Interestingly, in systems that form stripe upon cooling,
viewing the nematic state as a thermally melted version of
stripe was a very productive point of view [22]. Here we
note that frustration from the competition between J1 and
J2 has been long known to drive quantum melted versions
of Néel and stripe orders giving rise to C4 symmetric and
C2 symmetric (nematic) quantum spin liquids (QSLs),
respectively [23,24]. Moreover density matrix renormali-
zation group (DMRG) studies on the J1-J2 model noted
an intermediate paramagnetic phase between stripe order
and Néel order state [25,26]. A recent DMRG study of the
J1-J2-K1-K2 spin model found a nematic quantum para-
magnetic state between the Néel and stripe ordered states

FIG. 1. (a) Phase diagram of FeSe, SC denotes superconducting
phase. (b) Lattice structure of FeSe. The black dots represent
Fe atoms, and the orange dots represent Se atoms above and below
the Fe plane. J1−4 denote the exchange couplings. (c) The nematic
quantum spin liquid state of FeSe. The purple solid lines represent
antiferromagnetic bonds, with their thickness proportional to bond
strength.
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[27]. However, no link between the notion of frustration
and the intriguing INS or superconductivity has been
established theoretically. In this Letter, we propose a
microscopic (lattice model) description of the frustration
driven nematic QSL state that amounts to quantum melted
stripe and captures the observed INS. We then show that
this nematic quantum liquid state intertwines nematic order
and superconductivity in the charge sector, as the aniso-
tropic spin fluctuation breaks the point group symmetry
and mediate superconductivity at once.
In FeSe, there is evidence that local moments [14] coexist

with itinerant carriers of all three t2g orbitals [28–30]. In order
to capture the dual character [31], we turn to a spin-fermion
model [32–37]: H ¼ Hc þHS þHint, where Hc and HS
describe the itinerant carriers and localmoments, respectively,
that are coupled through Hint. For the spin model

HS ¼
X

ij

JijSi · Sj; ð1Þ

with exchange interactions Jij on a square lattice [Fig. 1(b)],
the two dominant interactions are the nearest-neighbor J1
and the next-nearest-neighbor J2 exchange interactions as in
other Fe-based superconductors [38,39]. But due to the near
itinerancy of the core electrons, longer range terms are also
expected [19]. Here we keep J1, J2, J3, J4 terms [Fig. 1(b)].
The J1-J2 model has been extensively studied both clas-

sically and quantum mechanically (see Refs. [20,21,25,26]).
Within classical models the role of frustration is clear from
the fact that the model can be recast as HS ¼ J2

PðS1 þ
S2 þ S3 þ S4Þ2 up to a constant at J2 ¼ J1=2 point, where
S1−4 are the four spins on each plaquette h1234i and the
summation is over all plaquettes. Classical ground state with
vanishing total spin on each plaquette property leads to a
zero mode at each wave vector on the Brillouin zone
boundary [21] and so the model is highly frustrated. With
quantum effects of small spin S, the frustration effects are not
limited to the fine-tuned point of J2 ¼ J1=2. Unfortunately,
a controlled theoretical study for quantum spins for such
frustrated spin systems is challenging. Hence we will restrict
ourselves to mean field theories and choose an ansatz that
(1) agrees with the observed inelastic neutron spectrum [9],
and (2) the ordering tendencies obey the classical condition
of S1 þ S2 þ S3 þ S4 ¼ 0 on a plaquette.
A prominent feature of the INS data [9] is its broad and

gapped continuum of spectral weight [Fig. 2(a)] without
any one-magnon branch. Intriguingly, such a continuum is
expected in a QSL with deconfined spinons in two
dimension in an insulating magnetic system [40]. Indeed
it is a common feature of slave-particle mean field theories.
So we will choose the Schwinger boson mean field
theory (SBMFT) [41] as our mean field theory approach.
Additional features of Figs. 2(a)–2(c) we aim to capture
include (1) the simultaneous presence of both ðπ; πÞ spin
fluctuations and ðπ; 0Þ, ð0; πÞ spin fluctuations, (2) the
quasi-one-dimensional dispersionω ∼ sin ky [42–44] found

in the shape of the upper and lower bounds, and (3) the
observed cross-shaped spectrum around ðπ; πÞ.
To find these features in a SBMFT, we turn to the known

[45] SBMFT phase diagram of the J1 − J2 model (Fig. 3).
Note that the Néel and stripe long-range order for small
J2=J1 and large J2=J1 are expected [24] to melt into C4

symmetric and C2 symmetric QSLs, respectively (see
Fig. 3). Hence the shaded region near the phase boundary
between C4 symmetric QSL, C2 symmetric QSL, and the
stripe ordered phase will capture all of the above features.
Specifically, states in this region will support a dynamic

FIG. 2. (a)–(c) Neutron scattering results for the dynamic
spin structure factor Sðqx; qy;ωÞ at (a) qx ¼ π, (b),(c) ω ¼ 50,
100 meV [9]. (d)–(f) SBMFT structure factor for the J1-J2-J3-J4
model at J2=J1 ¼ 0.904, J4=J1 ¼ 0.975 (the J3 term drops out of
the mean field level), and “spin” S ¼ 0.153. These results are
summed over two nematic domains.

FIG. 3. (Top) The SBMFT phase diagram of the J1-J2 model
[45].Ourmean field ansatz is the shaded regionwith added terms for
the J3 and J4 exchange interactions. (Bottom) The spin configu-
rations in the two long-range ordered phases. The blue dashed lines
represent themean field bonds connecting a spin (red arrow)with its
neighboring spins (black arrows). Here Néel order, stripe order,
isotropic QSL, and nematic QSL, correspond, respectively, to
ðπ; πÞLRO, ðπ; 0ÞLRO, ðπ; πÞSRO, and ðπ; 0ÞSRO in [45].
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spin structure factor with 1D-like dispersion and cross-
shaped spectrum assuming twin domains of the stripe state
are averaged over in the INS data. To account for the
itinerancy of the electrons, we extend an ansatz within the
shaded region of Fig. 3 with the additional J3 and J4
neighbor couplings. We also note the small value of 2S in
the phase diagram (i.e., S ≈ 0.15) corresponds to mean field
theory, overemphasizing the stability of the ordered phase.
To construct the ansatz, we now turn briefly to the

specifics of SBMFT. In Schwinger boson representation,
each spin Sr is represented by two bosonic operators brσ,
σ ¼ ↑;↓ with the constraint

P
σb

†
rσbrσ ¼ 2S. The spin

operator is then Sr ¼ 1
2

P
σσ0b

†
rσσσσ0brσ0 , with σ the Pauli

matrices. We can then expand Hr;r0 ≡ Jr;r0Sr · S0r in terms
of the spin-singlet operator A†

r;r0 ¼ b†r↑b
†
r0↓ − b†r↓b

†
r0↑ to

obtain Hr;r0 ¼ −Jr;r0 12A
†
r;r0Ar;r0 þ S2. Finally, we mean

field decompose Hr;r0 and introduce mean fields hAr;r0 i
using A†

r;r0Ar;r0 ¼ hA†
r;r0 iAr;r0 þ A†

r;r0 hAr;r0 i − hA†
r;r0 ihAr;r0 i.

We assume the bosons do not condense.
Defining Aμ̂ ≡ hAr;rþμ̂i, we keep Ax̂ ≠ 0 and the diag-

onals Ax̂�ŷ ≠ 0 and Ax̂�2ŷ ≠ 0 for states in the shaded
region of Fig. 3. The fourth neighbor term can be under-
stood as a result of the competition between Néel and stripe
states: it is a bond that is favored by both the ðπ; πÞ Néel
state and the ðπ; 0Þ=ð0; πÞ stripe state. The result is a state
with the same projective symmetry group as the Read and
Sachdev state used in the phase diagram of Fig. 3. It is a
“zero flux state” [46] and hence energetically competitive.
However, a full assessment of which QSL state produces
the best fit to the neutron scattering data in Fig. 2 is beyond
our scope. Our aim is to show that a quantum spin liquid
better fits the data than current proposals. Most importantly,
it is a state in which translational symmetry is restored by
quantum melting stripe into the C2 symmetric nematic
QSL state.
We can then calculate the dynamic spin structure factor

Sqω ≡ ImhSzðq;ωÞSzð−q;ωÞi associated with our ansatz.
At T ¼ 0, it is of the form [47] Sqω∼

X

k

fcosh ½2ðθk þ θkþq̃Þ� − 1gδðωk þ ωkþq̃ − jωjÞ; ð2Þ

where θk is the angle in the Bogoliubov transformation
of SBMFT (see Supplemental Material [48], Sec. 1 for
explicit expression), and q̃ ¼ q − ðπ; 0Þ arises because of a
standard unitary transformation we carried out on the B
sublattice for simplicity. The results summing over two
domains are plotted in Figs. 2(d)–2(f). They capture the
basic features of the neutron spectra: (1) The spectrum is
gapped [Fig. 2(d)], as a result of the absence of long-range
magnetic ordering. (2) Both ðπ; πÞ and ðπ; 0Þ=ð0; πÞ spin
fluctuations are present [Figs. 2(d) and 2(e)]. (3) The
spectrum displays the novel feature of continuum with

the bounds exhibiting quasi-one-dimensional dispersion
[Fig. 2(d)].
A sharp prediction of our model is the dramatic sup-

pression of spectral weight around ð0; qyÞ in a detwinned
sample [ðqx; 0Þ for the other domain]. This means at low
energies there are weights at, say, ðπ; πÞ and ðπ; 0Þ, but not
at ð0; πÞ. By contrast, in an orbital order driven picture for
nematic ordering, there is only a weak anisotropy in the
spin structure factor with the spectral weight at ðπ; πÞ,
ð0; πÞ, and ðπ; 0Þ of roughly the same magnitude even in a
single nematic domain [10,11]. Such a distinction has
profound implications for pairing. When the degree of
anisotropy in the momentum distribution of the spin spectra
is mild, pairing interactions with different q wave vectors
compete, leading to nodes [10,11]. On the other hand, the
strong anisotropy in the spectral weight distribution in our
SBMFT ansatz removes a need for a superconducting gap
node (see Supplemental Material [48], Sec. 3).
We now turn to the itinerant degrees of freedom to study

nematicity and superconductivity. Their kinetic energy is
given by a tight-binding model

Hc ¼
X

k;αβ;ν

ϵμναβðkÞc†αμðkÞcβνðkÞ; ð3Þ

where c†αμðkÞ creates an itinerant electron with momentum
k, spin μ, and orbital index α. The Fermi surface of FeSe
consists of two electron pockets around the M points and
one hole pocket around the Γ point [28–30]. Following
[6,49], we take a symmetry-based approach and expand the
dispersion around the Fermi surface. Experimentally, dyz
and dzx orbitals dominate the Γ point, dyz and dxy dominate
the ðπ; 0Þ point, and dzx and dxy dominate the ð0; πÞ point.
So we consider the corresponding intra- and interorbital
hopping terms. Furthermore, we include on site nematicity
and spin-orbit coupling to produce the band splitting
that gives rise to a single hole pocket around Γ. The
resulting simplified Fermi surface is shown in Fig. 4(a)
(see Supplemental Material [48], Sec. 2 for explicit
parameters) [50].
We model the coupling between the itinerant electrons

and the local moments via a Kondo-like coupling [33]

Hint ¼ −
X

i;α;μν

JαSi · c
†
iαμσμνciαν; ð4Þ

where σ represents the vector of Pauli matrices, and Jα > 0
denote the Kondo-like couplings. The Kondo-like cou-
plings are generally different for different orbitals. Hence,
we consider the implication of possible differences [52].
The proposed nematic QSL state induces nematicity in the

charge sector. For instance, nonzero hAr;r�x̂i in the nematic
QSL state generates an interaction among conduction
electrons along the x direction, which drives bond-centered
nematic order with φc ≡ hc†rþx̂;αcr;α − c†rþŷ;αcr;αi ≠ 0 below
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the temperature at which the nematic QSL develops. The
observed nematic transition at Ts ∼ 90 K [8] is consistent
with this picture. Furthermore, φc linearly couples to
φo ≡ ðnzx − nyz=nzx þ nyzÞ, where nzx;yz denote occupation
of zx and yz orbitals, and φs ≡M2

x −M2
y, where M

represents the magnetic moment. These different measures
of nematicity are consistent with orbital imbalance observed
in angle-resolved photoemission spectroscopy [28–30]
(φo ≠ 0) and the observed NMR resonance line splitting
[54] (φs ≠ 0).
The nematic spin fluctuations in the proposed QSL state

mediate pairing. We determine the resulting gap structure
via mean field procedure [55]. Remarkably, nonuniversal
aspects of the gap structure such as relative gap strength of
each pocket and the Tc are sensitive to strength of the
couplings Js [see Figs. 4(b) and 4(c)]. Nevertheless, the gap
functions share the following generic features: (1) The gap is
nodeless since the anisotropy in the nematic QSL spin
fluctuation removes any need for a node. By contrast, in the
itinerant model, where ðπ; πÞ, ðπ; 0Þ, and ð0; πÞ spin
fluctuations are close in magnitude, they compete for
deciding the sign structure of the gap causing nodal gap
structures. (2) The gap is deeply anisotropic due to the
variation of orbital content around each Fermi pocket. The
resulting nodeless but very anisotropic gap structure explains
the seemingly contradictory experimental results of STM
[63,64], penetration depth [64], and thermal conductivity
measurements [65], observing low energy excitations
[63,64] despite the evidence of a full gap [51,65]. (3) The
gap changes sign from pocket to pocket. This is consi-
stent (see Supplemental Material [48], Sec. 4) with the

observation of sharp spin resonance in the superconducting
state [66]. More specifically, our gap function is a combi-
nation of d wave as induced by ðπ; πÞ spin fluctuations and
s� as induced by ðπ; 0Þ spin fluctuations (note that Sz-
breaking spin-orbit coupling will mix the spin-singlet pairing
considered here with an even parity spin-triplet pairing [49]).
Two examples are shown in Figs. 4(b) and 4(c).
Figures 4(b) and 4(c) show that the orbital dependent

Kondo-like coupling can alter the relative magnitude and
anisotropy of gap functions at different Fermi pockets [while
thegap is predominantlydwave in Fig. 4(b),d and swave are
at par in Fig. 4(c).] Since the Kondo-like coupling requires
overlap of the wave function between the conduction elec-
trons and local moments, significantly lower spectral weight
of dxy orbitals [67] implies Jxy ≪ Jzx; Jyz [68].
Indeed, the gap function with such orbital dependent

Kondo-like coupling shows a compelling resemblance to
the gap structure observed by recent STMmeasurements [51]
[see Figs. 4(c) and 4(d)]. Sprau et al. [51] incorporated the
lower weights of dxy orbitals through the choice of Z factors
and showed that the calculated gap anisotropy can be fit
to experimental results using Zs as fitting parameters
while tuning interactions to Stoner instability. In our
model, imbalance in the spectral weight is incorporated
through the orbital dependence of the Kondo-like coupling
Jxy < Jyz ¼ Jzx. This orbital dependentKondo-like coupling
amplifies the role of ðπ; 0Þ spin fluctuation in pairing despite
larger spectral weight at ðπ; πÞ, which is consistent with
the observation of sharp spin resonance at ðπ; 0Þ [66] (see
Supplemental Material [48], Sec. 4 for further discussion).
In conclusion, we propose a nematic QSL state descrip-

tion of FeSe that explains the basic phenomenology of
FeSe: (1) spin dynamics observed in Ref. [9], assuming it is
averaged over domains, (2) nematic transition without
magnetic ordering, and (3) highly anisotropic fully gapped
superconducting gap. The central assumption that neutron
scattering is averaging over domains could be tested in a
detwinned neutron experiment. Orbital dependent Kondo-
like coupling mechanisms for orbital selective pairing in
bulk FeSe further offers new insight regarding higher Tc
observed in monolayer FeSe and K-doped FeSe. As we
show in Sec. 4 of the Supplemental Material [48], larger Jxy
that enables conduction electrons to utilize ðπ; πÞ spin
fluctuation with larger intensity and higher characteristic
frequency leads to higher transition temperature (as high as
47 K). Combined with the observation that spectral weight
of the dxy orbitals in the conduction electrons is much
higher in the higher Tc settings of monolayer FeSe and
K-doped FeSe [67], it is conceivable these systems make
better use of already more prominent ðπ; πÞ fluctuation to
achieve higher Tc. We note here that the nematic QSL state
we propose is distinct from the proposal of Ref. [17] in that
it contains no one-magnon branch of excitations [69],
although both proposals start from a strong-coupling
perspective and spin ground states lacking any form of

FIG. 4. (a) The Fermi surface. (b),(c) The gap symmetry
function on different Fermi pockets for three-band models with
(b) Jyz ¼ Jzx ¼ Jxy ¼ 1 and (c) Jyz ¼ Jzx ¼ 1, Jxy ¼ 0.4, and
J1-J2-J3-J4 chosen in the vicinity of the shaded region of Fig. 3
(top). Note that we make no attempt to simultaneously fit STM
data here and neutron data in Fig. 2 with the same model. (d) The
gap function observed in the recent STM measurements [51].
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magnetic order. Finally, although we used SBMFT as a
calculational crutch to capture the spinon continuum, the
ultimate fate of spinons in this spin system coupled to
itinerant electrons needs further study. Interestingly, such a
state with spinons coexisting with conduction electrons
would resemble the "FL*" state ("Fermi liquid star" state)
first proposed in Refs. [75,76] that has recently been
revisited using DMRG [77].
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