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We compute the temperature, voltage, and magnetic field dependences of the conductance oscillations
of a model interferometer designed to measure the fractional statistics of the quasiparticles in the
fractional quantum Hall effect. The geometry is the same as that used in recent experiments. With
appropriate assumptions concerning the relative areas of the inner and outer rings of the interferometer, we
find the theoretical results, including the existence of super periodic Aharonov-Bohm oscillations, to be in
remarkably good agreement with experiment. We then make additional experimental predictions with no
adjustable parameters which, if verified, would confirm the proposed interpretation of the experiment as a
measurement of fractional statistics.
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The statistics of identical particles strongly influence
their collective quantum behavior in a nonlocal manner,
even in the absence of interactions. In two spatial dimen-
sions (2D), in addition to Bose and Fermi statistics, more
exotic fractional [1,2] and even non-Abelian braiding sta-
tistics are permitted [3]. It has long been understood, on
theoretical grounds, that the quasiparticles (QP) or quasi-
holes (QH) in the FQH phases of the 2D electron gas in a
strong perpendicular magnetic field obey fractional braid-
ing statistics; i.e., they are anyons [4–6].

Since the fractional statistics is a tangible implication of
topological order that theoretically characterizes different
FQH states [7], many interesting proposals for its detection
have been put forth [8–14]. Yet Refs. [15–17] were the first
to claim to have detected such evidence. Camino et al. [15]
ascribed the observed superperiodic (�� � 5�0)
Aharanov-Bohm (AB) oscillation to the fractional statis-
tics obeyed by QP’s. The four terminal Hall conductance
was observed to oscillate around 1

3
e2

h (an indication of 1=3
QP’s carrying the current) with a period 5�0; however, a
clear theoretical understanding of this phenomenon has so
far been absent. This experiment probes a rather subtle
situation and a theoretical model which contains essential
aspects of the setup is much needed. In this Letter, we study
the constructive interference conditions for such a model
interferometer and find that 5�0 oscillation can occur
when the topological phase due to both the fractional
statistics and the classical AB effect are taken into account.
Our calculation of the temperature dependence of the
tunneling conductance agrees closely with the data of
Ref. [16] supporting the model for the observed oscillation.

FQH liquids are incompressible due to the strong corre-
lations between electrons in a given Landau level. The
different quantum Hall states are characterized, in part,
by certain rational values of the filling factor � (electron
density per magnetic flux quantum) at which the system
exhibits a quantized Hall conductance, GH � �e2=h [18].
The QP and QH exitations in a given FQH liquid have
uniquely determined fractional charge q?, and statistical

angle �?� [6]: the phase change of the joint wave function
for two identical QP’s upon clockwise exchange. For the
Laughlin states [4] with � � 1=�2n� 1�, q?� � ��jej and
�?� � ��, respectively. A QP can be viewed as a composite
object with a charge q? bound to a solenoid with flux�0 in
the direction opposite to that of the external field [6].

For FQH states that are not part of the Laughlin se-
quence, there are several distinct, but all apparently con-
sistent descriptions [5,19–22]. Here we will use Halperin
hierarchy, in which the anyonic nature of Laughlin QP’s is
crucial for the construction of a daughter state [5]. Starting
with a Laughlin state with filling factor �, QP charge q?,
and QP statistics �?, a daughter state with filling factor ~� is
obtained via condensation of QP of state � with

 ~� � ��
�q?�=e�2

�2� ��?�=���
� �� q?�n�; (1)

where n�, the number of Laughlin QP’s per area 2�l20 that
condense, is determined by the constraint that many QP
wave function obey the fractional statistics determined by
�?. (This corresponds to Eqs. (4)–(5) of Ref. [5].) The
interferometer of interest involves two distinct FQH states:
a Laughlin state � and its daughter state ~�. Here we focus
on the simplest case of � � 1=3 and ~� � 2=5 but the result
can be easily generalized.

The model interferometer is shown in the Fig. 1. Front
gates which confine electrons between two edge states of
opposite chirality also define the smooth potential profile
that looks like a ‘‘basin’’ which can hold more electrons in
the central region. In the fractional regime, the basin allows
a phase separation between a central puddle of FQH liquid
at higher filling ~�, and the surrounding FQH liquid at lower
filling �. To derive the interference conditions, we assume
the following: (a) absence of direct tunneling between the
outer 1=3 edge and the inner 2=5 puddle, (b) coherent
propagation of 1=3 edge QP’s which tunnel between the
left moving (upper) edge and the right moving (lower) edge
at two point contacts (PC) provided by constrictions,
(c) absence of impurity pinned QP’s in the surrounding
1=3 liquid.
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We first note that 5�0 is the unit of flux increment that is
associated with an addition of one 1=3 QP to the puddle,
which is the smallest unit of charge that leaves the puddle
in its ground state [9]. This can be understood from the fact
that n1=3 �

1
5 in Eq. (1) and the total number of 1=3 QP’s in

the puddle of area s under magnetic field B is N � bn1=3jBjs
�0
c

(where bxc reflects the discreteness of the 1=3 QP). Because
of the incompressible nature of the FQH liquid, there is a
one-to-one correspondence between the QP states in the
bulk and at the edge [7]. Hence an addition of a localized
1=3 QP in the puddle (a vortex) induces a propagating 1=3
QP (a soliton) at the edge. Therefore, each addition of 5�0

flux introduces an additional edge 1=3 QP and enhance-
ment in the edge transport.

Starting from this observation, we can derive the phase
�N of a QP encircling the area S when the flux through the
2=5 puddle jBjs is precisely 5N�0 with an integer N. This
phase consists of two independent contributions: (1) the
AB phase which depends on the area S enclosed by the
path of the edge QP, � q?

"

H
S
~A 	 d~l � �2�j q

?

e j
jBjS
�0
�

�10�j q
?

e j
S
s N, and (2) the statistical phase 2�?N, due to

the 1=3 QP forming the 2=5 puddle of area s. Namely,

 �N�q?; �?; S=s� � �2�
�

5

��������
q?

e

��������
S
s
�
�?

�

�
N

� �
2�
3

�
5
S
s
� 1

�
N; (2)

where we used �? � �=3 and q? � �jej=3. Note that
these two phases must be treated on an equal footing (see
Ref. [6] ). Also the importance of the discreteness of 1=3
QP reflected in the floor function of the statistical phase
cannot be understated.

Constructive interference would occur if �N is near an
integer multiple of 2� (or S=s a rational fraction).
However, nothing forces the area ratio to be a rational
fraction. For any value of the ratio, there will be many

nearby rational fractions. In general, larger fractions will
be closer to the actual value of the ratio but those require
large periods and they are more susceptible to dephasing.
Therefore, the value of the rational fraction that dominates
the oscillation will be determined by the competition be-
tween (1) quantitatively how close is the rational fraction
to the actual value of the ratio and (2) how simple the
resulting period is. For the case of an area ratio of roughly
1.43 (the setup of Ref. [15–17] ), oscillations associated
with the simple ratio 7=5 � 1:4 have the smallest possible
period of 5�0 while higher ratios such as 10=7 � 1:428
have a very large period of 105�0. Hence, this argument
predicts that if oscillations occur in the given setup, the
period will be 5�0. Notice also that proper accounting of
fractional statistics is essential for this nontrivial super-
period for 1=3 QP, that is different from the AB period
�jBj � 3�0=S, to emerge.

Before ending this discussion, we should comment on
the interference at intermediate flux values N <
jBjs=5�0 < �N � 1�. Since the minimum amount of flux
that can add a 1=3 QP to the inner 2=5 puddle is 5�0, the
flux through the puddle cannot change in this interval.
Hence, in order to accommodate the increase in the B field,
the inner puddle area s�B� must shrink and change the
electrostatic profile of the system until another 5�0 may
be added to the puddle where it will return to its original
size. Hence, this interval includes regions of destructive
interference, but the behavior also depends on microscopic
quantities.

We now calculate the tunneling conductance to the low-
est order in the tunneling amplitudes using the effective
theory for 1=3 edge states in terms of a chiral Luttinger
liquid with the Luttinger parameter � � 1=3 [7,23]. The
left-right moving edge QP propagator is given by
h yL=R�x; t� L=R�0; 0�i � f

�T�0

sin��T�0�i�T�vt
x��
g�, where �0 is

a short distance cutoff and v is the edge velocity.
Because of the branch cut in the propagator, the edge QP
obeys twisted boundary conditions which determines the
zero mode of the associated chiral boson. From an explicit
derivation of the edge theory from the boundary terms of
the Chern-Simons theory [21,22] for the bulk the twisted
boundary condition for the edge QP can be directly related
to the quantum mechanical consideration of the phase
accumulation for an extra QP as  yL=R�x� 2�R� �

ei�N yL=R�x�. Denoting the QP creation operators at the

two tunneling points x1 and x2 by  yR=L;i �  yR=L�xi; t� for
i � 1, 2, this twisted boundary condition can be repre-
sented in the tunneling Hamiltonian in the following man-
ner Ht � �1e�i!Jt yR;1 L;1 � e

i���2e
i!Jt yL;2 R;2 � H:c:,

where �1 and �2 are tunneling amplitudes. Here, the
Josephson frequency!J � q?V=" is introduced to impose
the Hall voltage drop. A similar approach was taken for
an interferometer without the central puddle in Ref. [10]
and our setup is a generalization of the setup studied by de
C. Chamon et al. [10].
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FIG. 1 (color online). The fractional quantum Hall interfer-
ometer of our interest. The inner puddle of area s, filled with the
FQH liquid ~� � 2=5, is surrounded by the � � 1=3 FQH liquid.
Quasiparticles of � FQH liquid propagating along the outer edge
tunnels at two tunneling points. The coherent tunneling path of
� � 1=3-QP can be approximated by a closed circle of radius R
(area S) enclosing the flux of � � �jBjS.
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Now the tunneling conductance can be calculated perturbatively to the lowest order in the tunneling am-
plitudes to be G�!J; v=R; T� � �G�!J; T� � cos��N��G�!J; v=R; T�, for an integer N. Only the (second) interference
term depends on the edge velocity and on the separation between two point contacts �R. Considering the case �1 �
�2 � � for the sake of simplicity, the tunneling conductance �G is

 

�G�!J;T��
e�2

h
j�j2��T�2��1B

�
�� i

!J

2�T
;�� i

!J

2�T

��
1

2T
cosh

�
!J

2T

�
�2Im 

�
�� i

!J

2�T

�
sinh

�
!J

2T

��
; (3)

where  �z� is the digamma function, and B�z; z0� the Euler Beta function. The oscillation amplitude �G is
 

�G�!J; v=R; T� � 4
e�2

h
j�j2��T�2��1B

�
�� i

!J

2�T
; �� i

!J

2�T

�

� sinh
�
!J

2T

���
1

2T
coth

�
!J

2T

�
� 2 Im 

�
�� i

!J

2�T

��
H��!J;�R=v; T� �

@
@!J

H��!J;�R=v; T�
�
; (4)

where the function H� is given in terms of the hypergeometric function F as the following [10]

 H��!; x; T� � 2�
��2��
����

e�2��Tjxj

sinh!2T
Im
�ei!jxjF��; �� i !

2�T ; 1� i !
2�T ; e�4�Tjxj�

���� i !
2�T���1� i

!
2�T�

�
: (5)

Since the temperature dependence of the tunneling am-
plitude will be a higher order effect, we remove the tunnel-
ing amplitude dependence by looking at the ratio
�G�T�=�G�T � 11 mK� and compare the calculated re-
sult with the experimental data reported in Ref. [16].
Taking the value of outer radius from Ref. [16] to be R �
685 nm and using only the edge QP velocity as a fitting
parameter, we found surprisingly good agreement with the
data for V � 7:42 �V and v � 1:41� 107 m=s (see
Fig. 2). The fit is better with the Hall voltage V �
7:42 �V than with the Hall voltage V � 7:5 �V which
is the estimated value of Hall voltage in Ref. [16].

The fact that the curve calculated from our model fits
well with the data supports a number of aspects of our
model. First we assumed that the oscillation is a result of
interference between QP’s tunneling at two point contacts
that are distance �R apart. This assumption introduces an
additional energy scale v=�R to the oscillatory term. The
lowest order perturbation theory captures the crossover
associated with this scale, allowing us to produce a full
crossover curve. Hence an experimental observation of this
crossover is a strong indication of the interference between
coherent QP’s. Second, the contiguous interference trajec-
tory shows that the QP’s maintain phase coherence not
only while they propagate along the edge (in accordance
with the hydrodynamic picture of edge states [7,23] ) but
also when they tunnel at two point contacts, and the
decoherence only comes from thermal broadening. Third,
since the QP tunneling is a relevant perturbation in the RG
sense, the fact that the lowest order perturbation theory
nicely describes the experiment implies that the tempera-
ture was high compared to the scale determined by the
tunneling matrix element. Finally, the fact that � � 1=3
was used for the curve of Fig. 2 supports the assumption
that transport is carried by 1=3 QP’s.

Now we should address the question of the connection
between the observed superperiodic AB oscillations and
the fractional statistics. Based on our detailed analysis, the
superperiodic AB effect observed in Refs. [15–17] is likely

to be a consequence of fractional statistics for the follow-
ing reasons. First of all, the conductance oscillation whose
amplitude indicates Luttinger parameter 1=3 showing the
periodicity of 5�0=s, sensitive to the flux through the
island, is a nontrivial effect yet it is consistent with our
picture. This superperiod coincides with what one would
expect from the combined effect of the AB phase and the
statistical phase, assuming the ratio of areas is what was
estimated in experiment. Second, the fact that there is a
crossover in �G as a function of T implies that there is
another scale in the problem. Given that the tunneling is
weak enough that the system stays in the weak tunneling
limit, the only scale that can possibly enter is R=v. If
indeed R=v is setting this crossover scale, that is a strong
indication that the conductance oscillation is due to
interference.

The model study hinges on the following key theoretical
ingredients which are closely tied to one another: the frac-
tional statistics obeyed by identical 1=3 QP’s, the incom-
pressibility of the 2=5 puddle, and the hierarchical
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FIG. 2 (color online). The comparison between
�G�T�=�G�T � 11 mK� calculated from Eq. (4) for � � 1=3
and the data from Ref. [16]. The dots are the experimental data
and the (red) solid line is the calculated curve at V � 7:42 �V,
v � 1:41� 107 m=s, and the dashed (green) line is the calcu-
lated curve at V � 7:5 �V, v � 0:94� 107 m=s.
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construction of 2=5 puddle out of 1=3 QP’s. If our model is
correctly describing the inner workings of the observed
temperature dependent superperiod oscillations, this obser-
vation will serve as the first direct confirmation of these
fundamental theoretical ideas. However, for more definite
confirmations, the following predictions should be tested.
First, we expect the oscillation period to depend on the
ratio S=s. Specifically, when S=s is too far from a com-
mensurate values, oscillation will be absent. This will be a
clear signature of presence of two periodicities: the AB
period and the statistical period. We also expect the cross-
over scale in the �G� T curve to decrease with an in-
crease in R (see Fig. 3). In addition, the voltage de-
pendence can be compared with Eq. (4). Finally, the oscil-
lation will disappear in a dirtier sample since impurities
will spoil the incompressibility of 2=5 puddle by trapping
QP’s in the surrounding region.

A few remarks are in order before we close the Letter.
(1) Here we used the hierarchical picture to describe 2=5
state. How to understand the experiment from the alternate
description of 2=5 state in terms of composite fermions
without invoking hierarchy and condensation of 1=3 QPs
has been looked into recently [24] but the outcome was
somewhat inconclusive and further investigation is needed.
(2) We also assumed that there is no QP tunneling between
outer edge and the inner puddle that contributes to the
conductance oscillation. Indeed such tunneling process
can also result in a series of periodic peaks in the Hall
conductance via a form of Coulomb blockade effect due to
the finite size of the 2=5 island in a manner similar to the
case discussed in Ref. [25]. However, the following points
support our assumption. First, the observed rather smooth
oscillation appears more like an interference effect. Sec-
ond, while tunneling between outer and inner edge cost
finite charging energy, tunneling between outer edges at
point contacts is a relevant perturbation in RG sense.
Hence it is more likely for the point contact tunneling be-
tween two outer edges to be a dominant channel at low en-
ergy. Nevertheless, the Coulomb blockade possibility can-

not be completely ruled out without more detailed analysis.
Since Coulomb blockade scenario will be independent of
outer edge radius, experiments with different outer edge
radius will serve as a direct test. Clearly the anyonic nature
of the FQH QP’s are just becoming experimentally acces-
sible. While the only interferometer reported to have oper-
ated under the FQH conditions has been the focus of this
Letter, it will be vital to analyze observations from other
geometries such as one in Ref. [26] in the future.
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FIG. 3 (color online). The tunneling conductance oscillation
amplitude �G�T�=�G�T � 11 mK� for different outer edge sizes
at same Hall voltage of V � 7:42 �V. The solid (red) curve is
for R � 685 nm, the dashed (green) curve is for R � 774 nm,
and the dash-dotted (blue) curve is for R � 1370 nm.
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