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While the influence of impurities on the local density of states �LDOS� in a metal is notoriously nonlocal due
to interference effects, low-order moments of the LDOS in general can be shown to depend only on the local
structure of the Hamiltonian. Specifically, we show that an analysis of the spatial variations of these moments
permits one to work backward from scanning tunneling microscopy �STM� data to infer the local structure of
the underlying effective Hamiltonian. Applying this analysis to STM data from the high-temperature super-
conductor Bi2Sr2CaCu2O8+�, we find that the variations of the electrochemical potential are remarkably small
�i.e., the disorder is, in a sense, weak� but that there are large variations in the local magnitude of the d-wave
gap parameter.
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I. INTRODUCTION

Scanning tunneling microscope �STM� measurements on
highly correlated materials, such as the high-temperature su-
perconductors, are increasingly being analyzed1–22 in the
hopes of inferring information concerning the character of
the dominant interactions affecting the electron dynamics.
However, it has long been known, as exemplified by a series
of famous experiments23,24 on simple metal surfaces, that the
effects on the local density of states �LDOS� of a change in
the Hamiltonian are highly nonlocal. The interference pat-
terns produced by quasiparticles scattering from an impurity
cause ripples in the LDOS to spread far and near. The pos-
sibility of such nonlocal effects makes it a nontrivial issue
how to best solve the inverse problem: given a set of high-
quality STM data, how does one work backward to infer the
character of the effective Hamiltonian that produced the
measured spectra? In the present paper, we show that the
low-order moments of the LDOS are determined entirely by
the local form of the Hamiltonian, and that they can therefore
be simply analyzed to obtain an approximate solution to this
inverse problem.

Of particular interest to us are STM studies of the high-
temperature superconductor Bi2Sr2CaCu2O8+� �BSCCO�,
which have revealed1,3,4,8–13 intriguing spatial inhomogene-
ities in the LDOS �r���: For energies � of order the super-
conducting gap �0, there are order-1 variations in the LDOS,
although for �����0, and again for �����0 there are only
relatively small fractional variations in � as a function of
position r. The energy of the low-energy peak in �r��� �usu-
ally called the superconducting coherence peak� varies sub-
stantially from one location to another, with a “patch” diam-
eter of around 30 Å. There have been at least two different
interpretations of these results proposed: The first proposed
interpretation9,13 associates the local value of the peak in
�r��� with the local magnitude of the gap parameter �r,r� in
a mean-field Hamiltonian. However, Fang et al.1 showed that
this interpretation can be quite misleading. They calculated
the LDOS of a metallic region �with a local value of �=0�
embedded in the background of a d-wave superconductor,

with a bulk �=�0. Unsurprisingly, they found that for a
patch size comparable to the superconducting coherence
length, the proximity effect causes the LDOS in the metallic
region to look like that of a uniform d-wave superconductor,
with peaks at nonzero energy. �See also Ref. 5.�

II. LOW-ORDER MOMENTS OF THE LDOS

Moments of the one-particle spectral function can be ex-
pressed in terms of matrix elements of the Hamiltonian and
certain thermodynamic correlation functions, as has been
recognized at least since the work of Nolting et al.25 Nolting
et al. and later authors, including Oganesyan,26 Randeria
et al.,27 and Norman et al.,28 proposed using a moment
analysis to extract information from angle-resolved photo-
emission spectroscopy data. While the moment analysis can
be carried through at a fundamental level, i.e., for
Schrödinger’s equation, we are actually more interested in
interpreting the results in terms of a low-energy effective
theory. We therefore begin by deriving expressions for the
first and second moments of the LDOS in the presence of
disorder �which was not considered by Nolting et al.�, and
for different assumptions concerning the structure of the ef-
fective Hamiltonian.33

We define the moments of the LDOS �r��� as

Mn�r� =

�
−	

	

�n�r���d�

�
−	

	

�r���d�

. �2.1�

�Note that a STM experiment does not actually measure the
LDOS due to the existence of unknown matrix elements.
However, since we have normalized the moments as indi-
cated, the effect of any energy-independent matrix element
cancels in Mn.� By definition, M0�r�=1. Expressions for the
first and second moments in the two cases discussed here are
derived in the Appendix.
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A. Case I: A quadratic (mean-field) effective Hamiltonian

In systems in which the relevant physics can be described
in mean-field approximation, the low-energy physics can be
derived from an effective Hamiltonian which is quadratic in
the fermionic field operators; this is the case in which the
moment analysis is most powerful, as the moments depend
only on the Hamiltonian, and are independent of the associ-
ated thermodynamic correlations.

Needless to say, this approach neglects much of the strong
correlation physics. We partially address this issue in case II
below. For now let us consider the most general mean-field
Hamiltonian,

H = −
1

2 �
r,r�

�tr,r�
r
†
r� + �r,r�
r

†
r�
† + H.c.� , �2.2�

for which the moments are straightforwardly seen to be

M1�r� = − tr,r � − �r, �2.3�

M2�r� = �
r�

tr,r�tr�,r + �
r�

��r,r��
2. �2.4�

Here the index r labels the position and band index of a
Wannier function, as well as the spin polarization, �r is the
local value of the electrochemical potential, tr,r� is the hop-
ping parameter from r to r�, and �r,r� is the superconducting
gap parameter.

B. Case II: Coupling to fluctuating fields

In case I, we assumed that �, �, and t were simply num-
bers. However, these parameters could have dramatically
fluctuating pieces, which are either present due to phonon-
mediated deformations of the effective electronic Hamil-
tonian or are generated �via a Hubbard-Stratonovich transfor-
mation� from an underlying interacting Hamiltonian. As
discussed at the end of the Appendix, all the expressions in
Eqs. �2.3� and �2.4� are generalized in this case by replacing
the left-hand side of each expression by its thermal expecta-
tion value �signified by �¯��, so in Eq. �2.3�, �r→ ��r� and
in Eq. �2.4�, tr,r�tr�,r→ �tr,r�tr�,r� and ��r,r��

2→ ��r,r��r�,r
† �.

For example, a fluctuating superconducting gap parameter
with rms value ��� �above Tc� makes the same contribution to
the second moment as a mean-field gap of magnitude ��� �in
the superconducting state�.

Henceforth, we will focus on case I, with the understand-
ing that the effective parameters that enter the Hamiltonian
may inherit temperature and magnetic field dependences
from the underlying thermodynamic state of the system.

III. PARTIAL MOMENTS

The integrals that define the moments Mn�r� extend to
infinite energies. Not only does this make them unmeasur-
able quantities, even if we could measure them, we would
not expect them to yield useful information. An effective
Hamiltonian provides a reasonable description of the com-
plex microscopic problem, at best, over a finite range of

“low” energies. Given this, we need to consider the more
complex issue of what information can be gleaned from the
partial moments, in which the integrals are cut off at a finite
energy �:

Mn�r;�� �
�

−�

�

�n�r���d�

�
−�

�

�r���d�

. �3.1�

Note that Mn�r�=Mn�r ;	�.
There is no simple general expression for the partial mo-

ments. However, there are circumstances in which important
information can be obtained from them, anyway. In this
sense, the application of these ideas is analogous to the ap-
plication of the f-sum rule to the analysis of optical conduc-
tivity data. For instance, were we interested in the tempera-
ture �T� or the magnetic field �B� dependence of the effective
Hamiltonian, we might look at the difference between the
LDOS at T=0 and B=0 and its value at nonzero T or B; if, as
is often the case, �r��� is essentially T and B independent
above a characteristic energy �, then by analyzing the partial
moments Mn�r ,��, we can obtain information about the in-
duced changes in the effective Hamiltonian.

For the present purposes, we will focus on a different
example, relevant to the analysis of the above-mentioned
STM data in BSCCO. Suppose we are interested in obtaining
information about the spatial variations of the effective
Hamiltonian. Again, assuming that for a range of energies
�� �r��� is approximately r independent, we can analyze
the spatially varying part of the moments, �Mn�Mn�r ,��
−M̄n��� where M̄n��� is the average of Mn�r ,�� for all r, in
terms of the spatially varying pieces of the effective Hamil-
tonian. An added advantage of this approach, as we shall
shortly see, is that different terms in the effective Hamil-
tonian produce changes in the moments on different energy
scales.

A. An explicit model

To illustrate the various aspects of this approach, we will
consider a specific model problem, which we design with the
STM studies of BSCCO in mind. We suppose that the elec-
tronic structure is governed by a two-dimensional effective
Hamiltonian Hef f on a square lattice of the form given in Eq.
�2.2�, with parameters taken to be representative16,29 of the
band structure and pairing symmetry of BSCCO. We con-
sider the case in which there is an inhomogeneous “patch” of
size 6�6 embedded in an otherwise uniform infinite back-
ground. �While this choice of patch size is arbitrary, we were
motivated by the experimental observation1,10,13 in BSCCO
of apparent patches of size around 3 nm.� For the spatially
uniform piece of Hef f we define tr,r�� t for r and r� nearest-
neighbor sites. �The band structure retains up to fifth-nearest-
neighbor terms, with second-nearest neighbor tr,r�=−0.55t,
and other hopping matrix elements smaller in magnitude by a
factor of 5 or more.� The chemical potential is tr,r=�
=0.44t, and �r,r�= ±�0 for r and r� nearest-neighbor sites
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with the signs chosen consistent with the d-wave symmetry
of the order parameter. We further take a representative value
of �0=0.085t. �In the case of BSCCO, t	0.15 eV and �0
	0.04 eV.� The band, which is not particle-hole symmetric,
runs from −2.7t to 6.7t.

Inside the patch we will consider three different extreme
cases: �1� Inhomogeneous electrochemical potential �r=�
+�� for r inside the patch; �2� inhomogeneous gap param-
eter with d-wave symmetry �r,r�=�0±�� for nearest-
neighbor r ,r� inside the patch; �3� inhomogeneous band
structure tr,r�= t+�t for nearest-neighbor r ,r� inside the
patch.

An exact formal expression for the single-particle Green’s
function of this problem can be obtained from multiple scat-
tering theory in terms of the Green’s function of the uniform
system. For each of the three cases, we have evaluated these
expressions numerically to compute the LDOS. These are in
turn integrated numerically to compute the partial moments.

B. Locality of the partial moments

Figure 1 shows the response of M2�r ;�� to the inhomo-
geneity in the gap parameter for several choices of �. In the
present case, we have taken ��=−�0, that is we have con-
sidered the case in which the pairing potential is absent in-
side the patch. For presentational clarity, we have plotted
4�M2�r ;�� /��2, the renormalized difference between

M2�r ;�� and the average value M̄2���, which in this case is
identical to the asymptotic value lim�r�→	M2�r ;��. Hence
�M2�r ;�� approaches 0 when the position r is far from the
patch. Both the LDOS at fixed � �not shown� and M2��� for
���0 exhibit complicated r dependences, with induced
spatial variability that extends far outside the patch. How-
ever, once � is greater than a few times �0, even though �

is still substantially less than the bandwidth, M2�r ;�� ap-
proaches its asymptotic value rapidly.

From Eq. �2.4� it follows that, in the limit �→	, �M2
→−�0

2 /4=−�0.085t�2 /4	−0.18t2. For noninfinite �, we can
see that the partial moment is already approximately equal to
the �→	 moment when �	3t �i.e., half the bandwidth�
and it overestimates the response of the moment by 	40%
for �=1.4t �i.e., 1 /5 of the bandwidth�. Thus, qualitatively
accurate information about the structure of the effective
Hamiltonian can be obtained even if the range of integration
is restricted to as little as 1 /5 of the bandwidth. Specifically,
if one were to simply pretend that �M2�r ;�=1.4t� is ap-
proximately equal to �M2�r ;�=	�, one would conclude that
the gap parameter changes from its value inside the patch to
its value outside the patch over an interface region of width
equal to a couple of lattice constants �as opposed to the ac-
tual one lattice constant� and one would underestimate the
magnitude of the variation of the gap parameter by 40%.

C. Distinguishing inhomogeneities in �, �, and t

In Figs. 2�a� and 2�b� we have plotted the spatially vary-
ing part of the first and second moments, �Mj�r ,��
=Mj�r ,��−M̄ j���, for each of the three different types of
inhomogeneity as a function of the cutoff �. Here, r is the
point at the center of the patch. Specifically, the three curves
are for the cases of inhomogeneous electrochemical potential
�dotted lines� with ��=0.1�, inhomogeneous gap parameter
�solid lines� with ��=−�0 �i.e., vanishing gap parameter in-
side the patch�, and inhomogeneous band structure �dashed
lines� with �t=0.1t. The curves have all been normalized, as
indicated, to be appropriate dimensionless measures of the
variation. Since the spectrum is bounded above, the moments
achieve their asymptotic values once � is in excess of the
band edge, 6.7t. The various kinks in the curves reflect the
lower band edge.

In Fig. 2�a� we see that, in the case of an inhomogeneous
��r�, the first moment has already reached 40% of its
asymptotic value by the time � is 1 /20 of the bandwidth.
The effect of the inhomogeneities in � and t goes to zero for
� in excess of the bandwidth as we expect from Eq. �2.3�.
This happens very rapidly for the case of gap inhomogene-
ities, so even when � is moderately small compared to the
bandwidth, the first moment gives a reasonable measure of
the inhomogeneity of the band structure parameters � and t.

The most striking feature of Fig. 2�b� is that, for small �,
�M2�r ;�� becomes rapidly large �even larger than its
asymptotic value� in the case of an inhomogeneous �, but
remains relatively small in the other two cases until � is a
substantial fraction of the bandwidth. �This is especially true
for inhomogeneous �.� We therefore conclude that
�M2�r ,�� for � a few times �0 but still much less than the
bandwidth gives a reasonable measure of the spatial varia-
tions of �.

We have also analyzed an example of a single strong �uni-
tary� scatterer embedded within an otherwise homogeneous
superconductor. The existence of a resonance near zero en-
ergy in the presence of a unitary scatterer has been predicted
by Balatsky et al.18 and experimentally confirmed.14,15,30

FIG. 1. �Color online� The dimensionless response
�M2�r ;�� /��2 due to the suppression of � in a 6�6 patch �dis-
played region is 14 sites wide� for several choices of �. �The band
runs from −2.7t to 6.7t.� As we expect, when the cutoff is large, the
second moment only knows about the local environment, and its
value changes abruptly as r crosses into the region of suppressed
gap. Surprisingly, the response of M2�r ;�� to spatial variations of
� remains quite local for � well above �0=0.085t.
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Also finite-energy resonances in the presence of a magnetic
�nonunitary� impurity have been observed in Refs. 10 and
31.

Figure 3�a� displays the LDOS ���� at different positions
away from a unitary scatterer along the lattice direction �gap
antinodal direction�. There is subtle fine structure in the
LDOS which we have suppressed by introducing an energy
broadening ��=2 meV. As is clear in Figs. 3�a� and 3�b�,
there is a �	0 resonance that peaks one site away from the
impurity 
�r=0��=0�=0�, and decays over the span of sev-
eral sites. In the direction 45° to the nearest-neighbor bonds
�nodal direction�, the peak intensity is substantially lower at
short distances �see Fig. 4�. As is seen in Fig. 3�c�, the first
�partial� moment is much more highly localized, even at rela-
tively small �, despite the fact that the impurity site LDOS
weight has been pushed almost entirely beyond the integra-
tion range.

As an aside, we note that it may be surprising that the
disturbance caused by the impurity appears to extend more

strongly in the antinodal direction than in the nodal direction,
whereas it is theoretically clear that the asymptotic effect of
the impurity at long distances is stronger in the nodal than in
the bond direction.17 However, explicit calculations reveal
that, to a remarkable extent, the structure at short and inter-
mediate distances depends strongly on the band structure.
This sensitivity to band structure is illustrated in Fig. 4: We

FIG. 2. �Color online� The difference between partial moments
inside and outside the patch in response to the inhomogeneity in the
parameter of the Hamiltonian h=� ,� , t as a function of the cutoff
�. �h=10 meV in all figures. �a� The first moment difference 
Eq.
�2.3��. �b� The second moment difference 
Eq. �2.4��.

FIG. 3. �Color online� �a� LDOS ���� near a unitary scattering
impurity for the model introduced in Sec. III at different positions.
�b� Logarithm of the peak height at �	0 as a function of distance
from the impurity. �c� �M1�r ;�� along the bond direction for sev-
eral choices of �.
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have plotted the LDOS around a unitary scatterer, for a band
structure ��k�=�NN�k�+�
�0�k�−�NN�k��, which interpolates
between a simple nearest-neighbor band structure �NN�k� �at
�=0�, and the full band structure �0�k� �at �=1�, used
throughout this paper.34 As � increases from 0 to 1, the short-
range character changes from predominantly nodal to antin-
odal falloff at short distances. Of course, the falloff is always
slower in the nodal direction at long distances for any �
� 
0,1�.

We have also looked at the case in which a resonant scat-
terer is placed at the center of a patch with either reduced or
enhanced gap. The behavior of the impurity-induced distur-
bance of the LDOS is not qualitatively different in these
cases, either—there is still a resonant peak near �=0 and its
spatial decay occurs with a similar pattern. Of course, other
features of the LDOS are even more complicated in these
cases. Nonetheless, even noting the strongly nonuniversal
character of the induced features in the LDOS at short dis-
tances, the fact that the low-energy peak observed in STM
studies of Zn-doped BSCCO is sometimes seen to fall by as
much as a factor of 100 in intensity within two or three
lattice constants of a Zn impurity14,15 is not easily reconciled
with a simple quasiparticle theory.

IV. BSCCO ANALYSIS

As a test of the practical usefulness of the local moment
analysis, we have applied it to some STM data of Fang and
Kapitulnik1 on a 220�280 Å2 section of surface of near
optimally doped Bi2Sr2CaCu2O8+�. Figure 5 shows a plot of
�a� the topograph and �b� the first moment M1�r ;�� with a
cutoff �=200 meV. �We chose this cutoff because it is sev-
eral times the average gap maximum but still small com-
pared to the bandwidth, and because at this energy the LDOS
is more or less spatially uniform as Fig. 6 shows.� Figure 7

shows a plot of �a� the gap map and �b� the second moment
also with �=200 meV. �The gap map displays the energy
difference between the positive and the negative energy
maxima in the LDOS at each point r.� The superstructure
due to the buckling of the Bi-O planes is clearly evident in
the topograph and the plot of M1 �Fig. 5� but not in the gap

FIG. 4. LDOS at �=0, near a unitary scatterer for several band
structures ��k�=�NN�k�+�
�0�k�−�NN�k�� on a region of size 30
�30 sites. 
Lighter shades denote larger ��r ,�=0�.� Here, �=0
corresponds to nearest-neighbor tight binding, whereas �=1 corre-
sponds to the full band structure from Refs. 16 and 29 used
throughout this paper. The short-range character of ��r ,�=0� is
sensitive to band structure, whereas the long-distance disturbance is
strongest along, or near, the nodal direction.

FIG. 5. �Color online� �a� Topograph of the BSCCO sample. �b�
First moment map M1�r ;200 meV� of the same sample. �Units of
meV.� The lattice superstructure is clearly visible in both.

FIG. 6. Spatial variance of the normalized LDOS �̃���
����� /�−�

� d� ���� is calculated and plotted as a measure of de-
gree of inhomogeneity of LDOS energy range between −�=
−200 meV and �=200 meV. As you can see the normalized LDOS
is very homogeneous outside the energy range between −100 and
100 meV. Also, as has been noted before, the LDOS is homoge-
neous at low energies as you can see in the flat region between −25
and 25 meV and the surprisingly sharp onset of the inhomogeneity
at about ±25 meV.
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map or the plot of the second moment �Fig. 7�. Conversely,
the splotchy character of the gap map, which has been inter-
preted as indicative of the existence of regions with different
superconducting character, is largely reproduced in the sec-
ond moment map, but seems largely uncorrelated with fea-
tures in the topograph or first moment map.

On the basis of the analysis of the previous section, we
expect that M1�r ,�� is approximately proportional to the
electrochemical potential, even though � is small compared
to the bandwidth. One of the most notable conclusions is that
M1 varies by only about 20 meV from position to position.
Moreover, most of that variation is due to the superstructure
variation. Even if we take into account the fact that having a
cutoff of 200 meV may mean that the spatial variation in the
electrochemical potential, ��, may be as much as twice the
variation in M1, we still conclude that, in units of the band-
width �1.4 eV�, the variations in the potential are small.

The second moment varies as a function of r by about
3000 meV2. On the basis of the results in Fig. 2�a�, we feel it
is safe to associate this with variations of ���2. However,
because of the relatively small value of �, direct application

of Eq. �2.4� may overestimate the variations of ���2 by as
much as a factor of 2.

Assuming this factor of 2 overestimation, i.e.,
�M2�r ;200 meV�	2�M2�r�	2��2 /4, and that the regions
with the smallest values of M2�r ,�� correspond to places
where ��r�=0, this analysis leads to the conclusion that �
varies as a function of position from 0 to about 80 meV
�Fang et al.1 have shown that the experimental data are com-
patible with minimum �=0�. Were we to assume a nonzero
value for the minimum value of �, we would obtain a cor-
respondingly larger estimate of the maximum gap. In com-
parison, were we to interpret the gap map as representative
of ��r�, the range of values inferred would be from approxi-
mately 25 to 70 meV. While both methods of analysis sug-
gest large amplitude variations in �, we believe that the
present estimate, which implies even larger variations than
does the gap map, is the more reliable. This exaggerated
response of the electronic correlations to small variations in
the local potential is suggestive of some form of frustrated
phase separation.32
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APPENDIX

Here we outline the proof for the sum rules, first for the
mean-field case. The mean-field Hamiltonian of Eq. �2.2� can
be written as

H = ��3 + ��1, �A1�

in which � and � are in general nontranslationally invariant
hopping and gap matrices, and � j are the Pauli matrices with
Nambu indices. The Green’s function for this Hamiltonian
can be defined as

G =
1

�� + i��I − H
. �A2�

In terms of G, the local density of states can be found as

�r��� = −
1

�
Im
G1,1�r,r�� , �A3�

where the subscripts are the Nambu indices. We can decom-
pose G into the sum of a Hermitian and an anti-Hermitian
operator. The Hermitian part obviously does not contribute to
the LDOS. The anti-Hermitian part is equal to

1

2
�G − G†� = − i����I − H� . �A4�

FIG. 7. �Color online� �a� Gap map of BSSCO near optimal
doping. �b� Map of the spatially varying piece of the gap magnitude
from the second moment M2�r ;200 meV�−M2

min from the same
sample. 
In determining M2

min, the spatial minimum value of M2�r�,
we have ignored values of M2�r� that are smaller than the mean by
more than three standard deviations.�
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Of course ���I−H� is defined as a matrix with the same
eigenvectors ��� as H, but with eigenvalues ���−��. Equa-
tions �A3� and �A4� tell us

�r��� = 
��� − H��r1;r1. �A5�

From this, we get the following relations:

� �n�r���d� =� �n
��� − H��r1;r1d�

= �� �n��� − H�d��
r1;r1

= Hr1;r1
n . �A6�

However,

Hr1;r1
0 � 1r1;r1 = 1, �A7�

Hr1;r1
1 � �r1;r1 = − � , �A8�

Hr1;r1
2 � 
�2 + �2�r1;r1 �A9�

=�r
2 + �

r�

trr�
2 + �

r�

�rr�
2 , �A10�

and this gives us the desired sum rules.
For the general interacting Hamiltonian, we can get the

density of states from the imaginary part of the retarded
Green’s function:

�r��� = −
1

�
Im�− i�

0

	

ei�t��
r
†�0�,
r�t���� =

1

2�
�

−	

	

ei�t��
r
†�0�,
r�t���dt , �A11�

and therefore

�
	

	

�n�r���d� =
1

2�
�

	

	 ��− i
d

dt
�n

ei�t���
r�t�,
r
†�0���dt d� =

1

2�
�

	

	

ei�t����i
d

dt
�n


r�t��,
r
†�0���dt d�

= �
	

	

��t�����i
d

dt
�n


r�t��,
r
†�0���dt = ��


r,H�, . . . ,H�,
r

†�� , �A12�

from which the most general counterparts of Eqs. �2.3� and
�2.4� follow. As an application of this formula we can see
that, if in the Hamiltonian �2.2�, tr,r� and �r,r� are turned into
dynamical fields by adding a term to the Hamiltonian that is
a function of these fields and their momenta then Eq. �2.3�
should be replaced by

M1�r� = − ��r� , �A13�

in which ��r� is the thermal average of the dynamical field
�r. For the second moment, Eq. �2.4� turns into

M2�r� = �
r�

�tr,r�tr�,r� + �
r�

��r,r��r�,r
† � + �
tr,r,H�� .

�A14�

The expectation value of the commutator of the Hamiltonian
with any operator in equilibrium is, of course, zero, so the
last term drops out of Eq. �A14�.
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