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We report on quantum interference between a pair of counterpropagating quantum Hall edge states that are
separated by a high-quality tunnel barrier. Observed Aharonov-Bohm oscillations are analyzed in terms of
resonant tunneling between coupled Luttinger liquids which creates bound electronic states between pairs of
tunnel centers that act like interference slits. We place a lower bound in the range of 20–40µm for the phase
coherence length and directly confirm the extended phase coherence of quantum Hall edge states.
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Two-dimensional electron systems under strong magnetic
fields condense into incompressible electron liquid states
characterized by a rational value of Hall conductancesxy
=e2/h.1,2 The physical excitations of the boundary of these
incompressible fluid states are gapless and propagate ballis-
tically parallel to the confining edge potential along a direc-
tion determined by the magnetic field. As the only active
conduction channel of quantum Hall droplets, the edge states
of a single isolated quantum Hall fluid are able to skirt local
potential defects and to transport electrical current without
backscattering.3–9 The edge states of quantum Hall systems
thus constitute a nearly ideal one-dimensional electronic sys-
tem supporting coherent quantum transport of electrons over
large distances.10–12 Due to the chiral nature of the edge ex-
citations, the coherence length of the edge excitations is ex-
pected to be extremely long and only limited by interedge
backscattering processes.

In the fractional quantum Hall regime the edge states of a
quantum Hall fluid depart drastically from that of a simple
Fermi liquid and behave instead as chiral Luttinger
liquids.10,11 However, the edge states of two quantum Hall
fluids in the integer regime can also exhibit non-Fermi-liquid
behavior if brought sufficiently close to each other. Due to
the effects of interedge correlations, two strongly coupled,
counterpropagating edge states behave as a single nonchiral
Luttinger liquid whose Luttinger parameterK and propaga-
tion velocity v are continuously tuned by the magnetic field,
leading to a drastic modification of the expected transport
properties of this one-dimensional “wire.”13 The interwire
correlation in coupled Luttinger liquids has led to predictions
of striking quantum effects.13–17

In this paper, we report on quantum interference effects
between two coupled chiral Luttinger liquids formed across a
quantum Hall line junction of two-dimensional electron sys-
tems separated by a high-quality tunnel barrier. In the limit
of zero temperature, the system enters a coherent tunneling
regime where the condition for quantum interference can be
realized and the conductance across the line junction exhibits
the characteristic set of oscillations associated with the
Aharonov-BohmsABd interference. We interpret these AB
oscillations as the signature of a resonant state created by
two tunneling centers that strongly couple the counterpropa-
gating edge states like a slit for quantum interferometer. Pre-

sumably these centers are created by a few widely separated
small defects or impurities whose role is to strongly couple
the two counterpropagating edge states through enhanced
tunneling at these sites. From the period of the oscillations,
we determine the size of the AB trajectories and establish a
lower limit of 20–40µm as the minimum phase coherence
for edge electrons. Our results confirm the expectation that
the quantum Hall edge states possess an enormously large
phase coherence length.

The line junctions are grown by cleaved edge overgrowth
using molecular beam epitaxy on thes110d face of
GaAs/AlGaAs multilayer structure.18,19 Figure 1sad illus-
trates the layout of the line junction device. The initial
growth along thes100d direction consists of undoped 13µm
GaAs followed by an 8.8-nm-thick alloy of Al0.3Ga0.7As and
completed by a 14µm layer of undoped GaAs. The
multilayer structure is then cleaved along thes110d plane and
a modulation doping is performed over the exposed edge,
forming two side-by-side sheets of two-dimensional elec-
trons separated from each other by the Al0.3Ga0.7As barrier.
Independent contacts to individual two-dimensional elec-
trons were made using evaporated AuGeNi. Incommensurate
conductance fluctuations were detected in a total of three
samples. For consistency the data shown throughout this pa-
per are from one sample whose density of two-dimensional
electrons wasn<231011 cm−2 with a mobility of ,1
3105 cm2 V−1 sec−1. Figure 1sbd illustrates the expected
edge state trajectories under magnetic field and the measure-
ment geometry.

Figure 1scd shows the magnetic field dependence of the
differential conductanceG at zero bias under 25 mK of tem-
perature. The zero-bias tunneling conductancesZBCd peak
successively grows in magnitude with magnetic field until
reaching the final conductance peak centered around 5.6 T.
Above 7 T, the conductance becomes vanishingly small as
the condition for transverse momentum conservation sup-
presses tunneling at zero bias in the fractional quantum Hall
regime.15,19–21,23The last conductance peak exhibits conduc-
tance fluctuations arising from AB oscillations. The inset of
Fig. 1scd shows an expanded view of the oscillations in the
conductance around the maximum. We find a set of small-
period oscillations superimposed on top of irregular features
at larger magnetic field scales. The larger-period structures
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are highly irregular and generally distort the shape of the
peak. Applying a finite bias to one side of the junction with
respect to the other sharply depresses these oscillations. We
interpret this behavior as a consequence of the electron-
heating-inducing suppression of AB oscillations under finite
bias conditions.

Two different theoretical scenarios have been proposed to
describe the physics of the line junction in the clean limit.
Within the level-mixing picture of tunneling across the line
junction,15,20–23 the conductance peaks occur whenever the
energy levels of the two edges coincide with the Fermi level
at zero bias as a function of magnetic field. It was also pro-
posed that the ZBC peak arises from the formation of a cor-
related electronic state with spontaneous interedge coherence
at zero momentum transfer.15 In an alternate picture, the
ZBC peak is due to the effects of point-contact tunneling in
the Coulomb-coupled edge states.13 In this framework the
successive ZBC peaks are due to quantum phase transitions
tuned by the magnetic field, caused by opening and closing
of tunneling channels between the coupled edge states as the
magnetic field is varied. In contrast to the Landau level mix-
ing mechanism, the point-contact mechanism provides a
natural mechanism for the AB effect, provided that there are
multiple tunneling centers embedded within the barrier.16

sThe case for the dirty limit was addressed by Ref. 24.d The
AB oscillations that we report here are consistent with this
interpretation.

Figure 2 illustrates the conductance fluctuations detected
near the final conductance peak centered around 5.6 T. In all
cases conductance exhibits a reproducible set of small oscil-
lations superimposed on slowly varying oscillations. The
small-period oscillations can change depending on history
and thermal cyclings. Once cooled to low temperatures, the
conductance fluctuations become robust and reproducible.
Visually, these oscillations are quasiperiodic and demonstrate
beating from the presence of multiple frequencies. The insets
of Fig. 2 show the result of fast Fourier transformsFFTd
analysis of the conductance traces, yielding at least two pri-
mary frequencies in addition to other, small-amplitude fre-
quencies. Inverse FFT shows that the conductance oscilla-
tions are predominantly determined by the two primary
frequencies with negligible contribution coming from the
small-amplitude frequencies. In case of the top conductance
trace in Fig. 2, the slowly varying oscillation of,0.2 T is

FIG. 1. sColor onlined sad Schematic of the line junction tunnel-
ing structure based on the cleaved edge overgrowth.sbd Edge state
and Aharonov-Bohm trajectories in the quantum Hall line junction
under quantizing magnetic field.scd Magnetic field sweep at 25 mK.
Inset: An expanded view of the conductance fluctuations of the final
conductance peak at 5.6 T.

FIG. 2. sColor onlined Quasiperiodic conductance oscillations
obtained from different thermal cyclings. Insets: Fast Fourier trans-
forms of the conductance data demonstrate that at least two large
periods are visible in the conductance.
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complemented by the quasiperiodic oscillations derived from
at least two distinct frequencies of 53.8 and 77.0 T−1, corre-
sponding to the periods ofDB=13.0 and 18.6 mT, respec-
tively.

Appearance of conductance oscillations in the final con-
ductance peak nearn=1 suggests that the AB effect occurs in
the strong-tunneling regime discussed in Ref. 16. As elec-
trons propagate parallel to the barrier, the tunneling hotspots
define a set of Feynman paths that encircle an area defined
by the distance between the tunneling hotspots,a, and the
width of the barrier,d, as illustrated in Fig. 1sbd. In this
regime, a system of two coupled chiral edges with two tun-
neling centers behaves as two semi-infinite Luttinger “leads”
coupled through an elongated island, qualitatively defined by
a set of closed Feynman paths. In this situation, first de-
scribed by Kane and Fisher in the context of quantum
wires,25 conduction along the barrier proceeds through reso-
nant hopping processes through the island. In the particular
case of this quantum Hall system, the resonance condition is
tuned by the external magnetic field due to the chiral nature
of the edges. The resonance condition is met when the flux
enclosed in the island is a half-integer multiple of the flux
quantumf0=h/e. Near a resonance, the tunneling conduc-
tance across the barrier is strongly suppressed leading to the
observed sharp AB-like oscillations.

It has been proposed that conductance oscillations due to
the AB effect of the antidot structure in the quantum Hall
regime26,27 are mediated by Coulomb blockade of electrons
around the antidot.27 It must be emphasized that the AB ef-
fect in the line junction does not involve Coulomb blockade.
Formation of a contiguous interference trajectory requires
tunneling through two locations in the barrier while main-
taining phase memory at the same time. Depending on the
distance separating these tunneling centers, electrons can co-
herently tunnel back and forth if the phase-coherence time of
edge electrons is greater than the thermal decoherence time.
At higher temperatures, thermal broadening is expected to
suppress the coherence of the AB oscillations. Figure 3
shows the effect of increasing temperature on these oscilla-
tions. The small period oscillations are considerably weak-
ened by 100 mK and largely disappear above 200 mK. Only
the weak remnants of larger-period oscillation are visible at
higher temperatures. Such a rapid suppression of the AB os-
cillations with increasing temperature shows that the ob-
served oscillations are the result of quantum mechanical
phase coherence.

A realistic barrier possessing more than two point contacts
will produce AB oscillations with a complex interference
patterns due to many possible interference pathways. These
“point contacts” may be the sites that contain an impurity or
a defect that enhances tunneling at the particular location.
The presence of two distinct oscillation frequencies, as ob-
tained from the FFT analysis, suggests that there are two
primary interference pathways likely established by at least
three preferential tunneling spots or alternatively two pairs of
resonant states along the length of the junction. The oscilla-
tion period DB for an enclosed areaA is given by DB
=sh/eds1/Ad. The interference pathways, as defined by the
distance between the interference slits and the width of the
tunnel barrier, provide a measure of the phase-coherence

length of the tunneling electrons. Table I summarizes the
periods of oscillations and the corresponding distances trav-
eled by the tunneling electrons parallel to the barrier assum-
ing that the electrons travel immediately next to the barrier.
The periods of oscillationsDB=11–13 and 18–21 mT deter-
mined from the FFT analysis of the data set yield corre-
sponding lengths of 36–41 and 22–26µm, respectively.
Since the actual phase-coherent length is larger than these
distances, these lengths provide a measure of the lower
bound for the phase-coherence length in the prescribed ge-
ometry.

The lower bound for the phase-coherent length may be
smaller since the distance between the two counterpropagat-
ing paths that produce the AB interference may be a little
wider than the barrier width, proportionally reducing the dis-
tances estimated in Table I. Since the guiding center for the
zero-bias conductance states lie at the center of the barrier, it
is unlikely that the distances between counterpropagating tra-
jectories of the tunneling electrons will approach two or
three times the magnetic length. If the separation between
opposite legs of the AB trajectory is doubled to account for
the uncertainty in the shape of the trajectories, then the lower
bound of the phase coherence length is reduced to about

FIG. 3. sColor onlined Temperature evolution of the conduc-
tance fluctuations. Small-period oscillations disappear above 200
mK.

TABLE I. Periods of principal oscillationsDB1 and DB2 from
the fast Fourier transform of the conductance oscillations from Fig.
3, and the corresponding distancesa1 anda2 between the interfer-
ence sites along the junction.

Data set DB1 smTd DB2 smTd a1 smmd a2 smmd

a 13.0 18.6 36.2 25.3

b 11.4 18.1 41.1 26.0

c 12.7 21.2 37.0 22.2
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,20 mm, which still remains a substantial phase-coherence
length in a solid state environment.

Our estimate of the phase-coherence length compares fa-
vorably with the measurement of the zero-field electronic
phase-coherence length of 4–10µm for GaAs/AlGaAs het-
erostructures determined from weak-localization analysis of
transport in lithographically defined one-dimensional
channels.28,29 The phase-coherence length from weak-
localization analysis was performed for samples with mobili-
ties comparable to our sample. While the bulk two-
dimensional electron system in our sample possesses
relatively low mobility, the tunnel barrier possesses very
little disorder and this should sustain ballistic transport of
electrons parallel to the barrier. The fact that the edge state in
our device can exhibit such a large phase-coherence length in
spite of the moderate bulk mobility attests to the remarkable
transport properties of quantum Hall edge states. On a related
note, our measure of the lower bound on the phase-coherence
length is about 100 times smaller than the length of 5.4 mm
determined from an earlier experiment on the narrowing of
the transition between two phase-separated regions in a Hall
bar.30 This claim was never verified independently. Our ex-
periment differs from Ref. 30 in that our determination of the
lower bound of the phase-coherence length is based on an
explicit detection of quantum interference. Our estimate of
the coherence length is comparable to the circumference of
the electronic interferometer of Jiet al., where the AB effect

was observed from the change of magnetic flux in an area of
,45 mm2 enclosed by two separated electronic paths.31 In
line junctions with higher bulk mobility, it should be possible
to establish an even larger bound for the phase-coherence
length.

In summary, we have observed the AB effect arising from
quantum interference between two counterpropagating edge
states across a quantum Hall line junction. The observed AB
oscillation is understood in terms of resonant tunneling be-
tween coupled chiral Luttinger liquids that creates bound
electronic states across the line junction. The formation of
the bound states is mediated by impurities in the barrier that
act like interference slits. From the periods of the conduc-
tance fluctuations, our conservative estimate places a range
of 20–40µm as the phase-coherence length for quantum Hall
edge states. As the actual phase-coherent length is longer
than the distances between the tunnel sites, it is probable that
the edge electrons in the line junction are able to maintain
phase-coherent motion in excess of 20µm as they move
along the junction.
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