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Interedge tunneling in quantum Hall line junctions
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~Received 29 May 2002; published 23 January 2003!

We propose a scenario to understand the puzzling features of the recent experiment by Kang and co-workers
on tunneling between laterally coupled quantum Hall liquids by modeling the system as a pair of coupled chiral
Luttinger liquids with a point contact tunneling center. We show that for filling factorsn;1 the effects of the
Coulomb interactions move the system deep into the strong-tunneling regime, by reducing the magnitude of the
Luttinger parameterK, leading to the appearance of a zero-bias differential conductance peak of magnitude
Gt5Ke2/h at zero temperature. The abrupt appearance of the zero-bias peak as the filling factor is increased
past a valuen* *1, and its gradual disappearance thereafter can be understood as a crossover controlled by the
main energy scales of this system: the bias voltageV, the crossover scaleTK , and the temperatureT. The low
height of the zero-bias peak;0.1e2/h observed in the experiment and its broad finite width can be understood
naturally within this picture. Also, the abrupt reappearance of the zero-bias peak forn*2 can be explained as
an effect caused by spin-reversed electrons, i.e., if the 2DEG is assumed to have a small polarization nearn
;2. We also predict that as the temperature is loweredn* should decrease, and the width of the zero-bias peak
should become wider. This picture also predicts the existence of a similar zero-bias peak in the spin tunneling
conductance near forn*2.

DOI: 10.1103/PhysRevB.67.045317 PACS number~s!: 73.23.2b, 71.45.Lr, 72.15.2v
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I. INTRODUCTION

The properties of the edge states of two-dimensional e
tron gases~2DEG’s! in high magnetic fields reflect the struc
ture of the Hilbert spaces of bulk fractional and integer qu
tum Hall ~FQH! states. In the absence of edge reconstruct
the low-energy Hilbert spaces of the FQH edge states ca
represented by a suitable set of chiral Luttinger liquids.1–3

This identification brought considerable interest in the stu
of FQH edge states as a well-controlled laboratory for
perimental exploration of the quantum transport propertie
Luttinger liquids. Much effort has been devoted to t
theoretical4,5 and experimental study of tunneling of bo
between FQH edge states6 and into FQH edge states7

Measurements7 of electron tunneling from a bulk-dope
GaAs electron into the sharp edge of a FQH state with fill
fractionsn<1 have confirmed the existence of both the sc
ing regime4,5 and the crossover behavior8 predicted by the
chiral Luttinger liquid picture. However, many importa
open questions remain about the actual observed behavi
the tunneling exponent and its consistency with the phy
of the bulk FQH states~see, for instance, Refs. 4 and 9–1
and references therein!.

Recently, Kang and co-workers12 have measured the dif
ferential tunneling conductance of a device in which tw
2DEG’s in the integer quantum Hall regime are latera
coupled through an atomically precise tunneling barr
Their data show a very sharp and intense differential cond
tance peak of heightGt[dIt /dV'0.1e2/h at zero bias for
certain ranges of magnetic field on top of an oscillatory
havior, which appears in qualitatively the same manner
all ranges of magnetic field. The data show an abrupt app
ance and the following gradual disappearance of the z
bias conductance~ZBC! peak as the filling factor is increase
past the apparent threshold valuesn1* *1 andn2* *2, respec-
tively. In both cases, the height of the ZBC peak they o
0163-1829/2003/67~4!/045317~17!/$20.00 67 0453
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served is considerably smaller than the quantum of cond
tancee2/h and the ZBC peak was observed over a fai
broad range of filling fractions (&e2/2h). The data of Kang
et al.12 show no ZBC peak in the tunneling conductance
n<1.

The theoretical explanation of the experiment of Ka
and co-workers has focused on the fact that it is not poss
to tunnel electrons between two perfectly aligned FQH ed
with opposite chirality.2 Thus, if the barrier is assumed to b
atomically precise, the only way in which tunneling can po
sibly take place is by the anticrossing of Landau levels
longing to both sides of the barrier.13 In the Landau gauge
AW 5(0,Bx,0), where thex direction is chosen perpendicula
to the barrier and they direction along the barrier, the single
particle wave function has the formw(x,y)5exp(iky)fk(x)
wherefk(x) is an eigenfunction of the Hamiltonian

Hk~x!52
\2

2m

]2

]x2
1

1

2
mvc

2~x2kl2!21VB~x!, ~1!

with VB(x) a potential due to the barrier which is symmetr
aboutx50. The dispersion curves originating from the tw
systems on both sides of the barrier overlap aroundk50. At
the crossing points, gaps open as a consequence of a
pling between the counterpropagating edge states.13 This is
indeed the scenario assumed in the work of Kang a
co-workers12 and by Mitra and Girvin,14 Lee and Yang,15

Kollar and Sachdev,16 and by an earlier calculation by Taka
gaki and Ploog.17

In this picture, the appearance of a zero-bias conducta
peak is ascribed to the existence of a gap in the spectrum
edge states at the barrier, since a gap suppresses the co
tion channel along the barrier provided by unmixed ed
states with opposite chirality formed by the barrier. Mit
and Girvin,14 as well as Kollar and Sachdev,16 observed that
©2003 The American Physical Society17-1
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electron-electron interactions yield a substantial modificat
of the gap which cannot be accounted for by level mixi
arguments. In these theories, the gap is equal to the so
energy of a quantum sine-Gordon model, derived from
microscopic theory of the barrier. Notice that, due to t
Landau level mixing induced by the barrier, the effecti
Fermi wave vector of the barrier states iskF50. Thus a gap
in the spectrum does not require backscattering in this ge
etry. In particular, Mitra and Girvin14 used a Hartree-Fock
theory to calculate the Luttinger liquid parameter, the coll
tive mode velocity, and the momentum cutoff of the effecti
sine-Gordon theory. It was found that the Coulomb inter
tion, which is taken into account in Hartree-Fock theo
leads to a substantial enhancement of the gap. More rece
Kollar and Sachdev,16 used a method of matched asymptot
to determine the momentum cutoff for sine-Gordon theo
The gap they found is larger than the result of Mitra a
Girvin.

However, even with the gap obtained by Kollar a
Sachdev16 it is not possible to understand the height of t
zero-bias conductance peak. Both Refs. 14 and 16 predic
general grounds a zero-bias peak with heighte2/h, larger
than the experimental result 0.1e2/h of Ref. 12 by approxi-
mately one order of magnitude. Furthermore, in this pict
the ZBC peak is expected above the second Landau lev
the noninteracting system, whereas the peak region
prominent nearn* '1 in the experiment.~Interaction effects
do not modify this result in any essential way.! Given these
facts it was argued in Refs. 14 and 16 that effects of disor
may be ultimately responsible for these discrepancies
tween theory and experiment.

In search of an answer to these questions, we reexam
the alternative scenario of tunneling between countercircu
ing edge states through an imperfection of the tunneling b
rier. We were motivated partly by the observation that
effects of anticrossing induced by the barrier are not
pected to occur at least before the second Landau leve
gins to be filled, which is not the regime in which the zer
bias peak first appears. Thus we will assume the m
standard situation of a barrier separating two FQH sta
with edges of opposite chirality and nonvanishing Fer
wave vectors. Under these circumstances tunneling is o
allowed if impurities and imperfections are present. This i
possibility that must be considered seriously particula
given that in the end impurity scattering is invoked as
explanation for the magnitude of the zero-bias peak, as
vocated in Refs. 14 and 16. Thus, in this paper we will
sume that the barrier is precise enough to have just a
imperfections which act as weak tunneling centers. In f
we will assume that there is just one such tunneling cen

In the situation of the experiment of Kanget al., where
right- and left-moving edges were spatially separated b
barrier, a local deformation of the edges due, for instance
an impurity can result in a weak tunneling center whi
mimics the pinch-off effect of the patterned back gate el
trode of the experiment by Milliken, Umbach, and Webb6

The authors of Ref. 6 have observed expected tempera
dependence of the tunneling conductance through the p
contact18,19 for n51/3. However, a quite unique feature
04531
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the setup of Ref. 12 is that it can explore not only the eff
of backscattering through a~presumably! point contact, but
also the effects of electron-electron interactions along
edges.

Our analysis shows that the electron-electron interac
plays a crucial role in the tunneling conductance. Electr
electron interactions turn the pair of edge states into a sin
nonchiral Luttinger liquid with an effective Luttinger param
eter K,1 for filling factors n*1. This problem can be
mapped onto the problem of a junction in a Luttinger liqu
first studied by Kane and Fisher,4,5 with a Luttinger param-
eter reduced from 1 due to the effects of the Coulomb in
actions along the barrier, which brings the system to
strong-tunneling phase if it were atT50. In Refs. 4 and 5,
Kane and Fisher pointed out that forK,1, tunneling at a
point contact is a relevant perturbation and the system flo
to a strong-coupling regime. WhileK,1 suggests that the
threshold for a zero-bias peak should be observed at a fil
factor somewhat belown51, we find that there is a non
trivial temperature dependence of the height and width of
zero-bias peak induced by the renormalization flow of
tunneling operator.

We studied the effects of finite temperature by mapp
the problem to the boundary sine-Gordon~BSG! problem
which is exactly solvable. By combining a number of know
exact results of the BSG theory with the calculation of
appropriate renormalization groupb function, we suggest a
natural explanation of the salient features of the experim
of Ref. 12. We studied in detail the crossover behavior of
tunneling conductance as a function of temperature
found that it can explain qualitatively the observations
Ref. 12. We find that finite temperature is responsible
both the low height of the peak and its gradual disappeara
when the filling factor is increased pastn;1. Further experi-
mental studies of the temperature dependence of the z
bias peak can check these theoretical predictions. In part
lar we give an explicit expression for the temperatu
dependence of the differential conductance at zero bias v
age for the particular value of the Luttinger parameterK
51/2. For more general values of the Luttinger parame
the solutions are more complicated but nevertheless v
smoothly and slowly withK ~see below!. Although the data
that have been published so far of the experiment of Ka
and co-workers12 are at a temperature of 300 mK, unpu
lished data from the same group in the temperature ra
from 300 mK to 8 K are well described by our results.20

We have also studied tunnel junctions at a barrier in p
tially spin-polarized QH states. We find that the reappeara
of the peak region nearn;2 can be explained if the electro
gas is not fully polarized but instead has a small spin po
ization. We also consider in this paper the interesting cas
a line junction in a spin-singletn52 state. We find that for
these QH states, atn*2 a spin-spin interaction across
single point junction leads to a number of interesting effe
in both spin and charge transport across the junction.

This paper is organized as follows. In Sec. II, we intr
duce the model for a IQH-barrier-IQH junction with a sing
tunneling center and bosonize the model. In Sec. III we m
the model to the integrable BSG model by using a stand
7-2
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folding procedure. The result will be used to understand
experiment nearn51. In Sec. IV we propose an explanatio
for the experimental results nearn52 with the assumption
that there is a small spin polarization forn52. Here we
generalize our analysis and discuss the role of excha
Zeeman, and magnetic anisotropy interactions on the tun
ing processes. Finally, in Sec. V we review our main resu
and give some predictions on future experiments based
our analysis.

II. MODEL HAMILTONIAN

We begin by briefly describing the experimental set
~see Fig. 1! and the most salient results of Ref. 12. T
2DEG-barrier-2DEG junctions used by Kanget al.12 con-
sisted of two regions of 2DEG of widths 13 and 14mm,
where the electrons reside in the two-dimensional interf
of the GaAs-AlGaAs heterostructure, separated by a 88
thick Al0.1Ga0.9As/AlAs barrier of height 220 meV. Thes
junctions are believed to be atomically precise, which me
that they have very few defects on their entire length. In
experiment the conductance atT5300 mK showed an oscil
latory behavior as a function of bias voltage with success
peaks spaced by an energy of the order of the cyclo
energy\vc in the full range of magnetic field. This effec
suggests that there is a mixing between Landau levels
abled by a level shift due to large bias voltage. However,
fillings n[nh/eB*1 andn*2, a sharp conductance pea
dominates at zero bias. The peak heights were 0.12e2/h and
0.11e2/h, respectively, for the samples published, but t
height typically varies from sample to sample, always be
of the order of 0.1e2/h.20

The model Hamiltonian for the setup of the experiment
Kang and co-workers that we will use here is a variant of
one considered by Kane and Fisher.4,5 We will make the
simplifying assumption the electron-electron interactions
the barrier are sufficiently well screened so that they can
represented by effective short-range intraedge and intere
interactions. While this assumption is not fully justified
represents a minor change to the physics of the system. T
the effects of the width of the barrier are included in t

FIG. 1. A line junction with a single backscattering center. T
two shaded regions and the space between correspond, respec
to two regions of 2DEG of widths 13 and 14mm and the 88-Å-
thick Al0.1Ga0.9As/AlAs barrier of 2DEG-barrier-2DEG junction
used by Kanget al. The single tunneling center is represented b
cross in the figure. The system is equivalent to a one-dimensi
Fermi system with right- and left-moving branches, interacting w
each other through short-range interactions.
04531
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matrix element. The right- and left-moving branches rep
sent the edge states of twon51 QH states laterally coupled
by the barrier. These edges have nonvanishing Fermi w
vectors equal in magnitude~for a symmetric barrier! and
with opposite direction, indicating the chiral nature of th
edge states. Backscattering is forbidden everywhere du
momentum conservation, and in the absence of a perio
potential there is no umklapp scattering. The electro
electron interactions are thus purely due to ‘‘forward scatt
ing’’ both intraedge and interedge, which conserve chiral
Thus, under these assumptions, the pair of edge states
haves effectively like a single nonchiral one-dimension
Luttinger liquid, with an effective velocityv0 and an effec-
tive Luttinger coupling constantgc . The main effect of the
impurity is to provide for a backscattering center at the i
purity site which we will define to be the origin,x50 ~see
Fig. 1!. The model that we will discuss and solve for tw
coupled n51 edges with opposite chirality can be eas
extended to discuss the same issues for fractional quan
Hall states. However, for reasonable values of the dim
sionless coupling constant~defined below! the resulting ef-
fective Luttinger parameter is always in the rangeK.1 in
which tunneling is suppressed and no ZBC peak can be
served. Thus, for the rest of this paper we will restrict o
discussion to the casen.1 in which there are no fractiona
quantum Hall states~for fully polarized systems!.

The system can thus be treated as if it were effectiv
one dimensional, i.e., as if the right- and left-movin
branches overlapped with each other and were coupled v
screened Coulomb interaction. Following Wen’s hydrod
namic approach,2,19 the edge states of oppositely movin
modes are described in terms of normal-ordered right-
left-moving densitiesJ6 which satisfy equal-time commuta
tion relations in the form of aU(1) Kac-Moody algebra:

@J6~x!,J6~x8!#57
i

2p
]xd~x2x8!. ~2.1!

The Hamiltonian density for the line junction may be writte
as a sum of two termsH5HG1Ht , whereHG includes the
effects of both interedge and intraedge interactions, andHt
represents tunneling term atx50. HG is given by

HG5pv0~J2
2 1J1

2 12gcJ1J2!, ~2.2!

where we assumed the speed of right- and left-moving e
trons to be same withv0, and the third term stands for th
density-density interaction between chiral electrons.

The dimensionless coupling constantgc , which measures
the strength of the interaction, can be estimated to begc
;U/EF where, for the case of Coulomb interactions,U
[e2/ed whered is the effective distance between the tw
edges,e is the static dielectric constant, andEF is the Fermi
energy for the edge states, assumed to be the same on
sides of the barrier. It is important to keep in mind that
practice there is no reliable way to determinegc in terms of
microscopic parameters. Still, this lowest-order estimat
implies that the Coulomb interaction must be fairly strong
the actual experimental setup. In any case, we expect tha
dimensionless coupling constantgc should be a smooth func

ely,

al
7-3
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tion of the bulk filling factorn and of the thickness of the
barrier. Intuitively we expect that as the filling factor in
creases, either by raising the electron density or by decr
ing the magnetic field, the effective distance between
edges of the two quantum Hall liquids will decrease. Con
quently we expect that the dimensionless coupling cons
gc will increase as the filling factor increases. We will s
below that this effect will play an important role in the e
planation of the effects seen in the experiments of Kang
co-workers.12

We will represent the effects of backscattering at the t
neling center~at the origin! by a local tunneling operato
which in terms of right- and left-moving electron creatio
and annihilation operators has the standard form

Ht5t~c1
† c21c2

† c1!d~x!, ~2.3!

wheret is the tunneling amplitude.
We will solve this problem using the standard bosoni

tion approach.21 The right- and left-moving chiral Ferm
fields are bosonized according to the Mandelstam formu

c6
† ~x!}

1

A2p
e6 if6(x), ~2.4!

wheref6 are chiral right- and left-moving Bose fields, re
spectively. In the notation of Ref. 8, the Lagrangians for
decoupled edges are

L6@f6#5
1

4p
]xf6~6] t2v0]x!f6 . ~2.5!

The normal-ordered density operators are bosonized acc
ing to the rules

J652
1

2p
]xf6 . ~2.6!

In terms of the chiral boson fieldsf6 , the full ~bosonized!
Lagrangian density is

L5
1

4p
]xf1~] t2v0]x!f11

1

4p
]xf2~2] t2v0]x!f2

2
2gc

4p
]xf1]xf22d~x!G cos~f11f2!, ~2.7!

where G measures the tunneling amplitude. As usual, t
system is diagonalized by the~Bogoliubov! transformation

f15
K11

2AK
w11

K21

2AK
w2 ,

~2.8!

f25
K21

2AK
w11

K11

2AK
w2 ,

and the choice ofK that diagonalizes the system is the effe
tive Luttinger parameter. Lettingv denote the renormalize
velocity, respectively, the effective Luttinger parameter a
the renormalized velocity are given respectively by
04531
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K[A12gc

11gc
, v[v0A12gc

2. ~2.9!

With these definitions the Lagrangian density for the li
junction with a point contact atx50 becomes

L5
1

4p
]xw1~] t2v]x!w11

1

4p
]xw2~2] t2v]x!w2

2d~x!G cos@AK~w11w2!#. ~2.10!

By comparison with Ref. 8 we see that the Luttinger para
eter K plays the role of an effective inverse filling factorn̄
51/K. With the notation that we are using hereK plays the
role of the constantg defined in Ref. 4.

Kane and Fisher studied transport properties of a o
dimensional electron gas with a single impurity in Ref. 4 a
predicted a change in the nature of the transport across
point contact~the impurity! at T50 depending on the value
of Luttinger parameterK, finding perfect transmission fo
K.1 and perfect insulating behavior forK,1 due to a com-
plete backscattering at the impurity; see Fig. 2.

As discussed in the caption of Fig. 2, perfect conduct
along the wire in the Kane-Fisher problem4,5 corresponds to
conductiononly along the barrier in our problem and, henc
to the complete suppression of tunneling across junction
our case and vice versa. However, we should keep in m
that the expression of Eq.~2.9! can be the correct expressio
for the Luttinger parameter only when the dimensionle
coupling constantgc in Eq. ~2.2! is small. From our previous
estimation ofgc we found that to lowest order inU/EF , gc
is substantially large. Hence the effects of irrelevant ope
tors not included in the HamiltonianH cannot be ignored as
they will give rise to finite, and presumably not small, co
rections to the functional dependence of the Luttinger para
eterK on the dimensionless Coulomb interactiongc . Never-
theless, what matters is that even after all these correct
are accounted for there is an effective Luttinger parameteK,
albeit with a complicated but analytic dependence on mic
scopic parameters. Thus we can still define an effective c
pling constant g̃c through an identity of the formK

[A(12g̃c)/(11g̃c), where g̃c(n)5 f „gc(n)…5gc(n)
1O(gc

2). Therefore all we can tell from Eq.~2.9! is that the
Luttinger parameter will become substantially smaller than

FIG. 2. Two phases for the system described by the Lagran
density, Eq.~2.10!, depending on the value of the Luttinger param
eter K defined by Eq.~2.9! at T50. There is a quantum phas
transition atK51 between two phases~Ref. 4!. ~a! A perfectly
conducting regime forK.1, which corresponds to no tunneling i
our problem, and~b! a perfectly insulating regime forK,1, which
corresponds to the perfect tunneling in our problem.
7-4
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due to Coulomb interaction effects. However, what matt
here is that this condition is sufficient to bring the juncti
deep into the backscattering phase at zero temperature w
backscattering is a strongly relevant perturbation. In this
gime the perturbative approach of Kane and Fisher4 is not
enough to determine the transport properties at finite t
perature. Fortunately, this problem can be mapped to an
actly solvable boundary sine-Gordon problem which will e
able us to go beyond the perturbative regime. We analyze
problem from the perspective of BSG theory in the ne
section.

III. TUNNELING CONDUCTANCE NEAR nÄ1

A. Mapping to the boundary sine-Gordon model

In order to make contact with the results of Fendley, Lu
wig, and Saleur, we will now map the effective Lagrangi
of Eq. ~2.10! to the boundary sine-Gordon theory. To th
effect we will perform a parity operationx→2x acting only
on the left-moving fieldw2 by which it now becomes a
right-moving chiral boson, still denoted byw2 . Let us define
the even and odd linear combinations of~right-moving! chi-
ral fields

we5
1

A2
~w11w2!,

~3.1!

wo5
1

A2
~2w11w2!,

in terms of which the Lagrangian takes the simpler, dec
pled, form

L5
1

4p
]xwe~] t2v]x!we1

1

4p
]xwo~] t2v]x!wo

2d~x!G cos@A2Kwe!]. ~3.2!

In terms of the right-moving chiral bosonswe and wo , the
edge currentsJ6 become

J151
K

2pA2K
]xwo2

1

2pA2K
]xwe ,

~3.3!

J251
K

2pA2K
]xwo1

1

2pA2K
]xwe .

In the presence of the point contact, the current along
junction splits into a backscattering or tunneling current a
a forward-scattering or transmitted current. The tunnel
currentJt5J12J2 is given by

Jt52
1

2p
A2

K
]xwe , ~3.4!

and it depends only on the chiral bosonwe .
In order to map the problem to the boundary sine-Gord

theory we will use the standard folding procedure.22–26 Let
x05vt denote a rescaled time coordinate andx15x. We
04531
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map each of left-moving fields defined on the whole linewe
andwo to nonchiral fieldsFe andFo defined on the half-line
x1>0. These nonchiral fields are decomposed into th
right- and left-moving parts:

Fe~x0 ,x1!5Fe,2~x11x0!1Fe,1~2x11x0!,
~3.5!

Fo~x0 ,x1!5Fo,2~x11x0!1Fo,1~2x11x0!,

where the right-moving parts of theF fields come from the
x1.0 parts of thew fields, and the left-moving parts of th
F fields come from thex1,0 parts of thew fields:

Fe,1~x![we~x! Fo,1~x![wo~x! for x1.0,
~3.6!

Fe,2~x![we~x! Fo,2~x![2wo~x! for x1,0,

with Fe/o,150 for x1,0 andFe/o,250 for x1.0. In terms
of the F fields, the Lagrangian density on the whole line
Eq. ~3.2! is mapped onto a Lagrangian density on the ha
line x1>0,

L5
1

8p
~]mFe!

21
1

8p
~]mFo!22d~x1!

G

v
cosSAK

2
FeD .

~3.7!

In Eq. ~3.7!, the odd bosonFo remains free, simply obeying
Neumann boundary conditions at the originFo(x150)50,
and decouples. In contrast, the even fieldFe , which from
now on will be denoted byF for simplicity, has a nontrivial
dynamics governed by the Lagrangian density

L5
1

8p
~]mF!22d~x1!

G

v
cosSAK

2
F D ~3.8!

defined forx1>0. The ~even! field F and obeys Neumann
boundary conditions at bothx150 andx1→`.

The action of Eq.~3.8! is known as the boundary sine
Gordon model and is a well-studied integrable quantum fi
theory.27 It is a theory of a free scalar field coupled to th
vertex operatorO5exp@iAK/2F(0,t)# at the boundary. The
main physical effect of the tunneling operator is to induce
flow of boundary conditions28 ~BC’s! at x150: for G50, F
obeys a Neumann BC atx150, whereas forG→` F has a
Dirichlet BC atx150. The~boundary! scaling dimension for
the operatorO at the weak-coupling fixed pointG→0 is
dO52(AK/2)25K. Thus forK,1, as in our case, the tun
neling operator is relevant and the weak-coupling fixed po
is unstable. Conversely, in this regime the strong-coupl
fixed point is stable. On the other hand, forK.1, O is
irrelevant at the weak-coupling fixed point and the system
more appropriately described by a dual picture as in the c
discussed in Ref. 8. This is the conventional situation in
fractional quantum Hall regime. In our case, the Coulom
interaction reduced the value ofK to be smaller than 1,
leading to a situation similar to the one considered by Fe
ley and co-workers,22 who investigated the problem of inter
edge quasiparticle tunneling in a FQH state.

We note in passing that in general, as noted in Ref.
4kF processes should be fine-tuned to zero if 1/9,K,1/4
7-5
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for the system to be integrable.~This is so because only on
relevant perturbation is allowed for integrability.27! Fortu-
nately in the case of interest here 4kF processes are forbid
den in a chiral system with only one tunneling center. Hen
the system we are interested in is automatically fine-tu
and the problem is integrable even forK,1/4.

The ~massless! boundary sine-Gordon theory, regarded
the massless limit of the conventional bulk sine-Gord
theory, was shown to be integrable by Goshal a
Zamolodchikov,27 who also determined the spectrum of t
BSG system by means of the thermodynamic Bethe an
~TBA! for an arbitrary value of the Luttinger parameterK.
The spectrum contains a kink and an antikink andn22
breathers forn21,1/K<n. The caseK51/2 is special in
that there is no breather and the even boson theory ca
represented in terms of free fermions. In this case, kinks
antikinks are just particle-hole transforms of ordinary ferm
ons. Although this problem is solvable for any value ofK,
the TBA computation is much simpler for 1/K5m, wherem
is an integer~in this case the bulk scattering matrix is com
pletely diagonal.! Since we are interested in the regimeK
,1, we will focus in what follows on the caseK51/m, with
integerm.

In the problem of transport through a point contact w
1/K integer there is a dynamically generated scaleTK which
uniquely determines the low-energy physics.8,22,29 ~In this
problemTK plays a role similar to the Kondo temperature
the conventional Kondo problem of a magnetic impurity in
metallic host.! The scaleTK is a function of the point-contac
interaction strengthG and of the ultraviolet cutoff scaleL.
TK is an energy scale separating the low-energy, lo
distance regime~IR regime! and the high-energy, short
distance regime~UV regime!; TK can also be viewed as th
temperature at which the weak-coupling expansion bre
down. One of the fundamental properties of quantum im
rity problems like point-contact tunneling or the Kond
model is that observables, such as the differential cond
tance in the point-contact problem or the magnetic susce
bility in the Kondo problem, are described in the scali
regime by universal scaling functions of the temperatureT,
the bias voltageV (H/T for the Kondo model!, the coupling
constantG, and the~ultraviolet! cutoff L, of the form

G~L,V,T,G! →
T,V!L

G~T/TK ,V/T!, ~3.9!

where the dependence of conductance upon cutoff and in
action strength is hidden in the definition ofTK .23,26Fendley
and co-workers22 find a dependence ofTK on G of the form

TK5CG1/(12K), ~3.10!

whereC is a nonuniversal constant.
The rest of this section will be devoted to an analysis

the implications of the known results for the BSG model
the tunneling contact problem that we are interested in an
its implications for the experiment of Kang an
co-workers.12 It will be shown that both the Coulomb inter
action and finite temperature play important role in the
havior of the zero-bias conductance peak nearn;1.
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B. Comparison with the experiment

We have shown above that the problem of the point c
tact in two laterally coupled FQH liquids maps onto th
boundary sine-Gordon theory. In particular we showed t
the effective Luttinger parameterK plays the role of an ef-
fective inverse filling factor. In this picture the point conta
maps onto the problem of the tunneling of electrons betw
two edges with filling factorn̄51/K.1. Fendley, Ludwig,
and Saleur22 ~FLS! solved a very similar problem but in th
regime n̄,1. FLS also found that, atT50 and voltageV,
the tunneling currentI obeys the exact remarkable duality

I ~TK ,V,n̄ !5
e2

h
n̄V2 n̄2I ~TK ,V,n̄21!. ~3.11!

Using this result we find that the differential tunneling co
ductance at zero temperature for our problem is given by22,30

Gt5K
e2

h
35 12 (

n51

`

cn~K21!S eV

TK
D 2n(K2121) eV

TK
,ed,

(
n51

`

cn~K !S eV

TK
D 2n(K21) eV

TK
.ed,

~3.12!

where the coefficientscn are defined as

cn~K !5~21!n11
G~nK11!

G~n11!

G~1/2!

G„n~K21!11/2…
,

~3.13!

where G(z) is the gamma function.„Here d5@K ln K
1(12K)ln(12K)#/@2(12K)# is a parameter that determine
the radii of convergence of these series.…

In Fig. 3 we plot Gt at zero temperature for differen
values ofK as functions ofeV/TK ~in units ofe2/h). We can
see from the plot that the differential conductance increa
rapidly as the voltage is lowered belowTK and that it satu-
rates rather rapidly to a value determined by the Luttin
parameterKe2/h at V/TK50 at zero temperature. Recall th
Eq. ~3.12! is valid only forK,1 where the tunneling opera
tor is relevant.31 The experiments of Kang and co-worke

FIG. 3. The differential tunneling conductance at zero tempe
ture vs eV/TK . Each dotted, dashed, and solid line representsK
51/2, K51/3, andK51/5, respectively. All three curves share th
common feature of a rapid increase in theGt as the voltage is
lowered pastTK followed by the saturation ofGt to the value de-
termined by the Luttinger parameterKe2/h at V/TK50.
7-6
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are done in the regimen*1. Thus here we consider the edg
states of two nominallyn51 quantum Hall states but tak
into account the effects of the interedge interactions wh
make the Luttinger parameterK,1. In the fractional regime
the bare value ofK is greater than 1, and it is reduced
value by the interedge interactions. Thus there exists a c
cal filling factor ~or magnetic field! nc(gc) at which K51.
For n.nc we haveK,1 while for n,nc we haveK.1.
Therefore when the filling factor is increased pastnc , the
tunneling operator becomes relevant and the tunneling
plitude G flows to infinity ~which makesTK grow to infinity
as well!, leading to a finite conductance at all bias voltages
zero temperature. We note here that the theory presente
this paper, based as it is on a single chiral boson with co
pactification radius 1 per edge, does not formally apply
the fractional quantum Hall regime. Up to important subt
ties which involve either additional neutral or topologic
edge modes~see, for instance, Refs. 9–11!, the fractional
regime can be viewed as a theory of two coupled effec
charge bosons, each with radiusAn, and an effective Lut-
tinger parameterKeff5K/n. Thus in the fractional regime th
effective Luttinger parameter should be greater than 1 and
zero-bias peak should be seen in this regime.

For values of the Luttinger parameterK,1/2 the tunnel-
ing conductanceGt , shown in Fig. 3 forK51/3 and K
51/5, becomes negative for sufficiently large values
eV/TK . To understand this interesting feature we recall t
the expression of the tunneling current foreV/TK.ed can be
obtained from the second line of Eq.~3.12! in the form

I t~V!5
e2V

h
K (

n51

`

an~K !S eV

TK
D 2n(K21)

, ~3.14!

with the coefficientsan given by

an~K !5
1

1/21n~K21!
cn~K !. ~3.15!

Since the tunneling coupling should make the tunneling c
rent increase, one expectsa1.0 which impliesc1(K),0 for
K,1/2 from the above relation betweenan and cn . This
negative value ofc1 for K,1/2 causes the conductance
become negative at large voltages and produces a dip in
conductance curve forK51/3 andK51/5 in Fig. 3. This
phenomenon has same origin as the conductance alon
quantum wire becoming larger thanKe2/h in Ref. 22 and
Koutouza, Siano, and Saleur reported similar phenomen
their work where they considered the charging effect on
tunneling between quantum wires.32 However, the negative
conductance is expected only for practically infinite drivi
voltage at zero temperature sinceTK is infinitely large at the
strong-coupling fixed point and a numerical calculation
the TBA shows that this effect disappears for smallV/T.22

Now let us turn to the finite-temperature case. In contr
to the zero-temperature behavior of indefinite running,
effective tunneling couplingG stops running at a certai
value G* (T) determined by the temperature at finite te
perature. As in all quantum phase transitions,33 this effect in
turn leads to the appearance of a finite temperatu
04531
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dependent crossover scaleTK* „G* (T),K…. Furthermore, now
both temperature and external voltage act as natural cr
over energy scales. From the point of view of our scena
finite temperature plays important role in understanding
peculiar features of the experiment, which can be summ
rized as follows.

~1! Existence of a region in the filling factor with the ZBC
peak.

~2! Substantially low height of the conductance peak
compared to typical Hall conductancene2/h.

~3! Appreciably large width of the peak region beginnin
at n* ;1.

~4! Disappearance of the ZBC peak asn is increased be-
yond n;1.

~5! Reappearance of the ZBC peak in a region near
aboven;2.

It turns out that, except for the reappearance of the ze
bias peak nearn52, most of these effects can be understo
within the point-contact scenario that we advocate here p
vided thermal crossover effects are taken into account.
reappearance of the peak nearn;2 will be discussed in the
next section. The rest of this section will be devoted to o
understanding on the first four aspects.

A central feature of this problem is the powerful fact th
the differential tunneling conductanceGt is a universal scal-
ing function of two dimensionless ratiosT/TK andV/T. First
of all, the system behaves qualitatively as if it were atT
50 as long as the temperature is the smallest among t
energy scales, i.e.,T!TK ,V. In this regime the system flow
to the stable fixed point atG→` where the tunneling curren
is large and the conductance saturates to its largest v
Ke2/h at ZBC. However, since the crossover scaleTK is a
~weak! function of n, there exists a filling factorn* for
which TK(n* )5TK* ;T. For T.TK* the system will flow to-
ward the decoupled unstable fixed point atG50. Hence, in
contrast with the caseT50 we expect only a crossover, in
stead of a phase transition. In particular this also means
at low but fixed temperatureT, we should see an appreciab
increasein Gt whenV becomes smaller thanTK* , sinceTK*
will be finite at nonzero temperature. However, asV becomes
comparable toT the system will begin to be driven by the
mal fluctuations, and the couplingG would no longer in-
crease further as the voltage is lowered, thus leading t
saturation of the tunneling conductance at a value de
mined by temperature. Therefore, even though the ZBC p
should be observable due to an increase inGt as the voltage
is lowered pastTK* , the height of the peak~essentially deter-
mined by the temperature! would be much lower than the
zero-temperature saturation valueKe2/h. Conversely, if the
temperature is higher thanTK , thermal fluctuations dominate
for all values ofV and no ZBC peak should be observed.

On the other hand, in the regime where the filling factor
such thatK,1, the dependence ofTK on the tunneling am-
plitude G is such@see Eq.~3.10!# that as the filling factorn
increases, the exponent in the dependence ofTK upon G
decreases. Hence, asn is increased well past a valuen;1,
the crossover scaleTK decreases, and at some point it b
comes lower than the temperature. In this regime the ju
7-7
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tion is effectively in the high-temperature regime and t
ZBC peak is absent. Thus, in the point-contact scenario,
gradual but rapid disappearance of the ZBC peak is a m
festation of this crossover.

This discussion can be made more explicit by looking
the behavior of theb function defined as

b~G,V,T![2
]G

] ln V
. ~3.16!

This renormalization group function measures the chang
the effective coupling constantG at temperatureT as the
external voltageV is varied. The statement that the condu
tance is a scaling function of the ratiosT/TK and V/T is
equivalent to saying that one can define a set of syst
which have the same conductance as the external volta
varied. This set of equivalent systems amounts to a renorm
ization group flow defined by the Callan-Symanzik equat

dGt

d ln V
~T/TK ,V/T!5

]Gt

] ln V
1

]G

] ln V

]Gt

]G
50, ~3.17!

where the second term on the right-hand side of the
equality comes from the fact thatTK has an intrinsic depen
dence upon the coupling constantG. Note that in Eq.~3.17!
we chose to vary the energy scaleV instead of the cutoff
scale, which as usual is hidden in the definition ofTK . This
equation can be used to calculate theb-function defined in
Eq. ~3.16!:

b~G,V,T!5

]Gt

] ln V

]Gt

]G

5

V
]Gt

]V

1

12K

TK

G

]Gt

]TK

, ~3.18!

where we used the relation betweenTK and G, Eq. ~3.10!,
for the second equality.

As we shall see below, looking at the properties of thisb
function is a useful way to understand the temperature
voltage dependence of the differential tunneling cond
tance, and in particular it provides a simple intuitive way
describe the crossovers. However, we should alert the re
that this ‘‘phenomenologically defined’’b function does not
necessarily coincide with the standard definition of the ren
malization group~RG! b function which is obtained by the
flow in coupling constant space induced by integrating ou
finite number of high-energy degrees of freedom. The st
dard RGb function is by definition an analytic function o
the parameters. By scaling,b(G,V,T) of Eq. ~3.18! is a di-
mensionless function of the dimensionless ratiosT/TK and
V/T, whereTK encodes all dependence on the microsco
coupling constantG. We will see below that thisb function
is analytic everywhere except at (V,T)5(0,0), since the lim-
its V→0 andT→0 do not commute.

At zero temperature, using Eq.~3.12! it is easy to see tha
V]Gt /]V52TK]Gt /]TK , and we obtain the expecte
result31

b~G,V,T50!52~12K !G. ~3.19!
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In order to analyze theb function at finite temperature
we now turn to theK51/2 case in which an exactGt is
known in closed form even at finite temperature, by referm
onizing the even boson theory to a noninteracting spinl
free fermion. In this special case, not only the conductan
but all n-point correlation functions are exactly solvable4,22,34

and the integral in the Eq.~5.2! of Ref. 22 can be reexpresse
in terms of the digamma functionc(x)5G8(x)/G(x), lead-
ing to the expression for the conductance,

Gt~T,V,K51/2!5
1

2

e2

h

TK

pT
Rec8F1

2
1

TK

pT
1

ieV

2pTG .
~3.20!

The plot of Gt(T,V,K51/2) as a function ofeV/TK for
several values ofT/TK in Fig. 4 shows the broadening of th
peak as the temperature is increased. The reduction
eventual disappearance of the peak height at high temp
tures is quite obvious in the plot of the ZBC peak height a
function of T/TK in Fig. 5. One can also understand th
gradual disappearance of the ZBC peak asn is further in-
creased as following. From Eqs.~3.10! and~2.9!, we see that
TK decreases asn increases forK,1. Therefore, asn be-
comes larger at givenT, Gt will be determined by lowerTK ,
leading to a smaller ZBC peak which would eventually d
appear.

The role of temperature on the peak height can also
seen by looking at the asymptotic behavior ofGt(T,V50,
K51/2) in the limit of T→0. At V50,

Gt5
1

2

e2

h

TK

pT
c8S 1

2
1

TK

pTD ~3.21!

from Eq. ~3.20!. In the limit T→0, we can use the
asymptotic expansion of the digamma function,

c~x!; ln x2
1

2x
1•••, for uxu@1, ~3.22!

to infer the asymptotic behavior of the peak height in the l
temperature limit as

Gt;
1

2

e2

h F12
1

4 S pT

TK
D 2

2•••G , ~3.23!

FIG. 4. The exact differential tunneling conductance given
Eq. ~3.20! is plotted as a function ofeV/TK for different values of
T/TK for K51/2. Observe the lowering and broadening of the pe
as the temperature is increased.
7-8
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where the decrease of the peak height at finite temperatu
evident.

Although it is possible to calculate the differential co
ductance at zero bias for more general values of the Luttin
parameterK, it involves solving a set of complex couple
integral equations. This has been done numerically for
related problem of tunneling into a Luttinger liquid in th
work of Koutouza, Siano, and Saleur32 who find that the
results vary quite smoothly asK changes below 1/2.~The
main differences arise due to an analog of the ‘‘resonan
found earlier by Fendley, Ludwig, and Saleur.22 This reso-
nance is responsible for the negative differential conducta
at large voltages and atT50.! Thus, at least at a qualitativ
level, it seems that the behavior forK below 1/2 can be
described by a curve like that of Eq.~3.20!, for some cross-
over scaleTK , but withK replacing the overall factor of 1/2
Preliminary results indicate that this is also a quantitaiv
accurate description of the data.20

With the full expression for the conductance, Eq.~3.20!,
we can calculate theb function, Eq.~3.18!, to obtain

b~G,V,T!52
1

2
G

eV

2pT

Im c (2)~z!

Rec (1)~z!1
TK

pT
Rec (2)~z!

,

~3.24!

wherez51/21TK /pT1 ieV/2pT andc (n)(z) stands for the
nth derivative of the digamma function. This result is show
in Fig. 6 in the form of the plot ofb(V,T)/ub(V,T50)u as a
function of T/TK and eV/TK . From the above expression
we can immediately read off that

lim
V→0

b~G,V,TÞ0!50, ~3.25!

which means that the coupling stops running atV50 at finite
temperature. Comparing Eq.~3.25! to Eq.~3.19! which gives
b(G,V,T50)52G/2 for the case of considerationK51/2,
we can see that the limitsT→0 andV→0 do not commute.
Hence, we conclude that there is a singularity atT5V50,
simply illustrating the fact that the coupling runs indefinite
only at zero temperature due to the underlying quant
phase transition atK51. This implies that all we should b
able to see at any finite temperature is a crossover fromT
.TK to T,TK nearK;K* ,1 at which the tunneling in-

FIG. 5. The zero-bias conductance peak heightGt(T,V50,
K51/2) is plotted as a function of temperature.
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creases rapidly asK becomes smaller thanK* , giving rise to
a pronounced ZBC peak asn is increased passn* .nc . This
explains why the experiment sees a rapid increase of
ZBC peak whenn is increased pastn* *1, even though we
expectnc,1 due to the effects of the Coulomb interactio
Furthermore, since the behavior of theb function is quite
different for V50 andT50, we expect a crossover nearV
;T, which was discussed earlier in relation to the existen
of a peak region with finite width and the low height of th
peak in the region. These crossover effects and the beha
of the b function are shown in Fig. 6. This result illustrate
our general statement that it is the competition between
temperature and bias voltage that enables us to observe
conductance peak, and the height of the peak can be m
lower than the saturation valueKe2/h since the observable
height will be limited by the temperature. This result al
supports our argument that competition betweenT and TK
eventually leads to the disappearance of the peak as the
ing factor is raised further past a valuen;1.

In this section, we gave a detailed analysis of the exp
mental predictions of our model, which was developed in
previous section. After mapping the problem to the BS
model, by borrowing known exact results of the BSG pro
lem and calculating the relevantb function, we suggested
consistent explanations to the so-far-not understood pec
features of the experiment by Kang and co-workers. In
picture, finite-temperature effects are responsible for the
servability of a ZBC peak with an unexpectedly low value
its height, as well as to the finite width in filling factor
where the peak is observed.

Our picture is a natural consistent scenario for the app
ance of the ZBC peak in the wide range of filling factor ne
n;1. In the next section we will show that the reappearan
of the ZBC peak in the range of filling factor nearn;2 in
principle can also be understood by following closely t
approach of this section for then;1 case but now consid
ering the possibility of a partially spin-polarized state ne
n;2.

FIG. 6. The exactb function in units of b0[b(V,T50)
5G/2 is shown as a function ofeV/TK andT/TK . There is a cross-
over between theT→0,VÞ0 limit, whereb→21/2G, and theV
→0,TÞ0 limit, whereb→0 nearT;V: as the temperature is in
creased pastV, theb function approaches zero where the coupli
stops to run. This crossover explains the low height of the pe
which eventually disappears asn is increased well beyond 1, lead
ing to a smallerTK .
7-9
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IV. TUNNELING CONDUCTANCE NEAR
AND ABOVE nÄ2

To understand the peak in then;2 region, we first note
that this peak region begins abruptly nearn;2 in an appar-
ently similar manner as it does nearn;1.12 In the bulk
system, as the filling factor becomes comparable ton;2,
the electron spin begins to matter, as the spin-reversed s
begin to get progressively occupied. Thus, even if the 2D
is fully polarized forn;1, spin plays a crucial role forn
;2. In addition, for samples with high nominal electron
density, spin fluctuations are known to become important
in some cases so much that the ground state may even
spin singlet. However, this situation requires samples w
fairly high densities, which is presumably not the case in
experiment of Kang and co-workers. Hence, a natural ex
sion of the picture that we advocated for in the previo
section, as it stands applicable only for fully polariz
2DEG’s, simply requires us to take into account the chan
in the physics brought about by the electron spin and
particular, of the role played by both Zeeman and excha
interactions. This extension should be applicable to b
spin-singlet and -nonsinglet cases. However, once the
degrees of freedom is included, there is a richer class
possible behaviors, for there are now three possible type
tunneling corresponding to tunneling of charge and/or s
degree of freedom. In what follows we will be interest
mostly in the regime in which the spin polarization is n
large. Hence, we will assume a reference state in which
up- and down-spin branches have the same filling factorn↑
5n↓ and investigate the effects of the Zeeman term wh
will tend to polarize the state. We will focus on states w
total filling factor n>1. For these states the outermost ed
is an51 edge~per spin component!. Effects of the magnetic
field thus enter in the choice of the range of filling factorn
>2, in the presence of spin exchange interactions, an
effects of the Zeeman term as well as other possible SU~2!
symmetry breaking terms on the edge states. We will c
sider two different physical situations:~1! when the SU~2!
symmetry of the spin is broken either by a~large! Zeeman
term, in which case the ground state may be polarized~al-
though not necessarily fully polarized!, or by magnetic an-
isotropy terms~expected to be very small in these system!,
and ~2! when the Zeeman term is small enough that
ground state is a singlet atn52. There are a number of othe
interesting cases, such as the singlet and partially polar
states atn,2, which will not be discussed here. These sta
have interesting tunneling properties35 but do not exhibit the
ZBC peak in the tunneling conductance that we are disc
ing here.

The Hamiltonian density that was studied in the previo
section can be easily modified to account for the spin deg
of freedom and its interactions. Thus, we write the Ham
tonian density in terms of the spin-dependent chiral elect
densitiesJ6,a[c6,a

† c6,a , with spin projectiona5↑,↓.
Furthermore, the spin-spin exchange interaction and Zee
term should now be included in the Hamiltonian density. L
us define the charge densities operators of chiral mode
J6

c [J6,↑1J6,↓ and the three-component spin densities o
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a [ 1

2 c6,a
† sab

a c6,b , where sa are Pauli matrices,
with a5x,y,z. The Hamiltonian density for the system o
two coupled edges can be written as a sum of charge
spin Hamiltonians,

HG5Hc1Hs . ~4.1!

The charge Hamiltonian is given by

Hc5
pvc

2
~J1

c J1
c 1J2

c J2
c 12gcJ1

c J2
c !, ~4.2!

where both the bare edge velocity and the effects of
intraedge interactions are absorbed in the effective cha
velocity vc . We will write the spin part of the Hamiltonian
as a sum of two terms,

Hs5Hsymm1Hpert, ~4.3!

where the SU~2!-invariant part has the form36

Hsymm5
2p

3
vs~JW 1•JW 11JW 2•JW 216gsJW 1•JW 2!. ~4.4!

Here vs includes the effects of intraedge spin interactio
andgs is the interedge strength of the exchange interacti

We have used a simple and rather crude model to estim
the interedge exchange coupling constant. We modeled
barrier with a potentialV(x) of heightV0 and width 2a. We
find that, as expected, due to the antisymmetry of the w
function, the dimensionless coupling constantgs has a ferro-
magnetic sign and that its magnitude has a rapid depend
of kFl wherekF is the Fermi wave vector of the edge state
For a barrier of width 88 Å and height 220 meV, and for
model in which correleations enter only in the antisymme
of the wave function, we estimate that reasonable value
the dimensionless interedge exchange coupling constan
quite small, typically in the rangeugsu;1023–1024. While it
is quite possible that we are underestimating the magnit
of gs it seems unlikely that a realistic value can be larger
more than an order of magnitude. In addition, we show
low that for the ferromagnetic sign, interedge exchange
teractions are~marginally! irrelevant. Hence it is reasonabl
to setgs to zero if gs,0, since the expected~logarithmic!
corrections to scaling will be exceedingly small.

The Hamiltonian for the symmetry breaking perturb
tions, i.e., a Zeeman term and an anisotropy term, is

Hpert52mBgB~J1
z 1J2

z !14pvsgslJ1
z J2

z , ~4.5!

wheremB is the Bohr magneton,g is the gyromagnetic ratio
and l measures the strength of the magnetic anisotr
~which is quiet likely to be very small in the samples
Kang and co-workers!. For l.0 the anisotropy is Ising like
and for l,0 it is XY like. For notational convenience, w
define theXY component exchange couplingg' and Ising
exchange couplinggi :

g'[gs , gi[~11l!gs . ~4.6!

Experimentally it is known that in GaAs the gyromagne
factor is anisotropic and that this anisotropy is quite large
7-10
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the geometry of the experiment of Kang and co-worker37

The magnitude~and sign! of the magnetic anisotropy~anisot-
ropy in the exchange interaction! are apparently not known
As we will see below the magnetic anisotropy can potentia
lead to interesting effects such as a possible spin-gap s
However, given the smallness of our estimate of the
change interaction we should expect the spin gap to be s
as well. Nevertheless, in spite of the possible small value
this gap, we will discuss the interesting physics of this sta

We will treat the spin-1/2 case using Abelian bosoniz
tion, much in the way we did the spin-polarized case in
previous section. However, we will pay special attention
the role of the SU~2! spin symmetry which is not manifest i
Abelian bosonization. In any event we will also be interes
in situations in which the SU~2! symmetry is explicitly bro-
ken ~say, by the Zeeman term! and in that case Abelian
bosonization is the most direct way to solve this proble
Hence we proceed to use the standard Abelian bosoniza
approach in a similar manner as in Sec. II except that n
the chiral Fermi fields are spin dependent.

The right- and left-moving chiral Fermi fields with spi
a5↑,↓ are bosonized according to the Mandelstam form

c6a
† 5

1

A2p
e6 if6,a(x), ~4.7!

wheref6,a are spin-dependent chiral right- and left-movin
Bose fields, respectively. The corresponding bosoni
normal-ordered density operators are

J6,a52
1

2p
]xf6,a . ~4.8!

Extending the expression in Eq.~2.5! to the partially spin-
polarized case of concern, the Lagrangians for each
component of the decoupled noninteracting edges are

L6,a@f6,a#5
1

4p
]xf6,a~6] t2v0]x!f6,a . ~4.9!

The chiral boson fieldsf6,a can be decomposed into the
spin and charge components:

f6,c5
1

A2
~f6,↑1f6,↓!, f6,s5

1

A2
~f6,↑2f6,↓!.

~4.10!

In terms of these chiral charge and spin bosons, the ri
moving electron operators are~up to Klein factors!

c1,↑/↓
† ;

1

A2p
e( i /A2)fc,1e6( i /A2)fs,1; ~4.11!

i.e., the electron splits into a spin-1/2 charge-neutral spi
and a charge-1 spin-0 holon.

The chiral charge currentsJc,6 are

Jc,652
A2

2p
]xfc,6 . ~4.12!
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The coefficientA2 in front of the charge current shows th
the filling factor isn52. In what follows, exactly as wha
we found for fully polarized states, changes in the fillin
factor will only appear through the dependence onn of the
coupling constants. However, the coefficient of the curr
will remain unchanged.

The corresponding expressions for the chiral spin curre
Ja,6 , a5x,y,z, the three generators of thesu(2)1 Kac-
Moody algebra of spin, are

Jx,65
1

2p
cos~A2fs,6!,

Jy,656
1

2p
sin~A2fs,6!, ~4.13!

Jz,652
1

2p

1

A2
]xfs,6 .

The factors ofA2 are crucial for the system to be invaria
under the SU~2! symmetry of spin.38

In the absence of electron tunneling at the point conta
the Hamiltonian for the line junction reduces toH5Hc
1Hs of Eq. ~4.2! and Eq.~4.3!, respectively. Thus we re
cover the familiar spin-charge separation of one-dimensio
interacting electronic systems. This Hamiltonian has be
studied extensively in the literature~see, for instance, the
pedagogical discussion in Ref. 36!. The charge sectorHc
behaves exactly as in the spin-polarized case of Sec. II.
only difference here is the factor ofA2 in the definition of
the ~bosonized! chiral charge currents which reflect the fa
that these are the edge states of two quantum Hall states
with filling factor n52. Thus the discussion of Sec. II im
plies that the charge sector is described by a rescaled ch
bosonwc5(fc,11fc,2)/AKc, with Lagrangian

Lc5
1

8p S 1

vc
~] twc!

22vc~]xwc!
2D , ~4.14!

with a charge Luttinger parameterKc equal to

Kc5A12gc

11gc
. ~4.15!

Note thatKc,1 sincegc.0. The compactification radius o
the charge bosonwc is Rc5A2/Kc. The velocity of the
charge boson is renormalized exactly as in the spin-polar
case, i.e.,vc5v0A12gc

2.
Naturally, the main difference between the case with

small spin polarization and the fully polarized case reside
the spin sector with effective HamiltonianHs . The first two
terms of the SU~2!-symmetric part of spin Hamiltonian o
Eq. ~4.4! represent two decoupled edges with exact SU~2!
symmetry. In fact, this is a fixed-point Hamiltonian of tw
chiral su(2)1 Wess-Zumino-Witten conformal field theorie
Except for the renormalization of the velocities, due
forward-scattering intraedge interactions, this is a fr
7-11
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theory. In Abelian bosonization the first two terms of t
Hamiltonian of Eq.~4.4!, which we will denote byHs,6 , are
given by38

Hs,65
2p

3
vsJW s,6

2 5
vs

4p
~]xfs,6!2. ~4.16!

The interedge exchange interaction term, with coupling c
stantgs , is a chirality breaking perturbation and its effec
are well known.36 After Abelian bosonization, the Ising com
ponent exchange interaction only renormalizes the velo
and the compactification radius of the spin boson but theXY
component exchange introduces a cosine term as can be
in the bosonized effective Lagrangian

Ls5
1

8p S 1

vs8
~] tws!

22vs8~]xws!
2D 2

vsg'

p
cos~A2Ksws!

2
mBgB

p
AKs

2
]xws , ~4.17!

whereg' andgi are defined in Eq.~4.6! and the last term is
the Zeeman term. In Eq.~4.17!, ws is the rescaled spin bo
son,

ws5~fs,11fs,2!/AKs, ~4.18!

with the Luttinger parameterKs , the renormalized velocity
vs8 , and the compactification radius of the spin boson giv
by

Ks5A12gi

11gi
, vs85vsA12gi

2, Rs5A2/Ks. ~4.19!

A. Small Zeeman term

Let us discuss first the case when the Zeeman energ
very small. Although this case does not apply to the samp
used in the experiments of Ref. 12, in which the Zeem
interaction is not small, nevertheless it is a good start
point for a theoretical analysis of this problem. The ren
malization group~RG! b functions for the exchange interac
tion coupling constants are well known to have t
form24,39,40

dg'

d ln a
52g'gi25g'

3 1•••,

~4.20!
dgi

d ln a
52g'

2 14g'
2 gi1•••,

wherea is a length scale. The resulting RG flow is sketch
in Fig. 7. The consequence of the flow depends on the
isotropy of the interaction and the sign of the coupling as
following.

1. SU(2)-symmetric case

This model describes twon52 singlet quantum Hall
states coupled along a line junction. In this case we
define a single coupling constantgs[g'5gi . In spite of the
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anisotropic look of Eq.~4.17!, the relation betweenKs and
g' , which is same asgi in this case, guarantees that th
allowed RG flows are SU~2! invariant.

From Eq.~4.20!, the RGb function for gs is

b~gs!5
dgs

d ln a
52gs

222gs
31•••. ~4.21!

For gs,0, i.e., ferromagneticexchange coupling, the co
sine term is amarginally irrelevantperturbation. Hence in
the low-energy regime the effective coupling vanishes,gs
→0, albeit very slowly, giving rise to logarithmic correc
tions to scaling. Thus, forgs,0 the spin sector of the line
junction remains gapless andKs→1, Rs→A2, a result origi-
nally found by Luther and Emery41 in the theory of the one-
dimensional electron gas. This is presumably the relev
case for the line junction in the SU~2!-symmetric regime
since the interedge exchange interaction is naturally fe
magnetic. However, we will see below that magnetic anis
ropy can make the antiferromagnetic regime accessible.

In contrast, forgs.0, i.e., antiferromagneticexchange
coupling, this perturbation ismarginally relevantand the
flow is asymptotically free. In this case the effective coupli
constantgs flows to large values where scale invariance
violated. Hence, in this case the system flows to a phase
an energy gap in the spin sector, aspin-gap state, along the
SU~2!-invariant RG trajectory. This state is physical
equivalent to the Haldane phase42 of one-dimensional quan
tum Heisenberg antiferromagnets and to the Luther-Em
liquid of the one-dimensional electron gas.41 In particular, for
Ks51/2, the spin bosonws is equivalent to a massive fer
mion. This is the well-known Luther-Emery point.

For small values of the coupling constantgs the magni-
tude of the spin gapDs can be determined by perturbativ
renormalization group methods. For a strictly SU~2!-
invariant system the spin gap is the well-known result

Ds~gs!5DAgse
21/2gs, ~4.22!

whereD is an ultraviolet cutoff of the order of a fraction o
the Fermi energy.~The factor ofAgs is due to corrections to
scaling which appear at two-loop order ings .) Given the
apparent smallness of the exchange coupling constantgs ,

FIG. 7. The RG flow of Eq.~4.20!. The trajectories starting a
points in the shaded region flow to the spin-gap phase.
7-12
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this result is probably good enough here. For larger value
gs the spin gap can be determined either from the full Bet
anstaz solutions of the sine-Gordon and chiral Gross-Ne
models or at special points, such as the Luther-Emery po
from bosonization arguments. In both cases in addition to
spin gap one finds a spectrum of solitons which should l
to interesting resonance effects in tunneling.

2. Effects of a small magnetic anisotropy

Let us now discuss what happens if there is a small m
netic anisotropy, i.e., a small anisotropy in the exchange
teraction. Presumably for the samples used in the exp
ments of Kang and co-workers,12 if there is any anisotropy a
all, it is exceedingly small. However, we will discuss th
case here since it leads to interesting effects. Magnetic
isotropy makes the Ising exchange couplinggi differ from
the XY exchangeg' . In this case the RG flow no longe
follows the SU~2!-invariant trajectory. It is easy to see from
the b functions, Eq.~4.20!, that for gs.0 ~in which case
both gi andg' are positive!, the line junction will flow to-
ward the spin-gap state.

However, forgs,0, the RG flows depend on the aniso
ropy. With Ising-like anisotropy (l.0) andgs,0, the RG
trajectories flow toward the line of fixed points at zero sin
Gordon coupling constant andKs.1. Conversely with
XY-like anisotropy (l,0) we get the opposite result. In th
case, the RG trajectories still flow initially toward the fre
theory (g'→0). However, they will eventually be driven t
the marginally relevant flow of the SU~2! trajectory, leaving
the su(2)1 fixed point. Hence, in this regime the line jun
tion flows toward the spin-gap state. Thus, even though
initial value of the interedge interaction is negative,gs,0,
an arbitrarily smallXY anisotropy drives the line junction
necessarily to a spin-gap state. This is a remarkable e
which leads us to conclude that there is a phase transitio
l50. The discussion above is summarized in Fig. 7 wh
the region in the coupling constant space which flows to
spin-gap phase is shaded.

B. Effect of Zeeman interactions

Let us finally discuss the case of large Zeeman inter
tions. Physically this is the most important case. It is also
simplest. The charge sector is not affected by the Zeem
interaction, and it behaves exactly in the same way as in
previous cases. The effect of the Zeeman term on the
sector depends on which regime the line junction is in. In
absence of a spin gap, which as we saw above happen
gs,0 in the SU~2!-symmetric case or with Ising-like mag
netic anisotropy, the cosine term is irrelevant. In this ca
the Zeeman term can be eliminated from the Lagrangian d
sity by a shift of the spin field:ws→ws12pgx/vs , where

g[
mBgB

p
AKs

2
. ~4.23!

While this shift has no effect on the charge sector it force
twist in the boundary conditions of the spin sector:
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Dws[E dx]xws→Dws1
2pg

vs
L, ~4.24!

whereL is the length of the system~the barrier!. Since]xfs
is proportional to the spin density, the twist of BC’s, E
~4.24!, implies that thez component of the spin polarization
Mz5^Sz&, is finite, Ms}g/vs}BL, and this state has a non
zero spin polarization, although in general is not fully pola
ized.

Hence, the only observable effect of the Zeeman term
the gapless phase is a nonzero spin polarization and hen
twist of the boundary conditions.

Let us now discuss the effects of the Zeeman term in
spin-gap phase. An examination of the effective Lagrang
Ls of Eq. ~4.17! shows that, as expected, there is competit
between the Zeeman term and the cosine operator. This c
petition, which bears a close analogy with the mechanism
the commensurate-incommensurate transition, leads to
ferent physical behaviors depending on which is the smal
energy scale, the Zeeman energy or the spin gap. When
Zeeman energy is small compared with the spin gap,
system will stay in the gapped phase despite the twist
BC’s. However, when the Zeeman term dominates, the
sine operator once again becomes irrelevant and the spin
is destroyed by the Zeeman interaction.

C. Tunneling transport

The discussions in the previous two subsections can
summarized as the following. Depending on the sign of
exchange interactions, magnetic anisotropy, and the stre
of the Zeeman term, the spin sector of the system can
either in a spin-gap phase or a gapless phase. Let us fin
look at the consequences of these results for the questio
electron tunneling transport in the line junction. Due to t
spin degree of freedom, there are now three possible type
tunneling corresponding to the tunneling of charge and
spin degree of freedom. The lowest-order operators for e
of these processes are the single-electron tunneling ope
which transports both charge and spin,

Oe5c↑,1
† c↑,21c↓,1

† c↓,21H.c.

}cosSAKc

2
wcD cosSAKs

2
wsD , ~4.25!

the spin-singlet pair~spin-0, charge-2! tunneling operator

Opair5c↑,1
† c↓,1

† c↓,2c↑,21H.c.}cos~A2Kcwc!,
~4.26!

and the tunneling operator of a spin-1 charge-neutral exc
tion:

Os5c↓,2
† c↓,1c↑,1

† c↑,21H.c.}cos~A2Ksws!.
~4.27!

The single-electron tunneling operatorOe clearly mixes the
charge and spin sectors. As far as the charge sector is
cerned, this tunneling operator is similar to the one for fu
polarized electrons shown in Eq.~2.10!, except that instead
7-13
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of the Luttinger parameterK we now haveKc , whereKc is
the charge Luttinger parameter defined in Eq.~4.15!. The
spin sector has a similar structure with the effective Luttin
parameterKs . The scaling dimension of the operator of E
~4.25! at a point contact is

de5
1

2
~Kc1Ks!. ~4.28!

The singlet pair tunneling operatorOpair which depends only
on the charge boson and the holon pair tunneling operatoOs
which depends only on the spin boson are higher-order
erators. At a point contact,Opair andOs have boundary scal
ing dimensionsdpair andds , respectively, given by

dpair52Kc , ds52Ks . ~4.29!

Now let us discuss the possible effect of these operator
the spin-gap phase and the gapless phase. First, becau
singlet pair tunneling operatorOpair depends only on the
charge boson, its effect is the same for the spin-gap ph
and the gapless phase. Since the charge sector is free
constraint of momentum conservation forbids singlet p
tunneling in the absence of a point contact. However,
operatorOpair at a point contact is relevant forKc,1/2 in
the presence of a strong Coulomb interaction@Eq. ~4.29!#
and it can lead to charge-only tunneling for both the spin-g
phase and gapless phases. On the other hand, the possib
of the other two tunneling processes—namely, the sing
electron tunneling and the holon-pair tunneling—depend
the presence or absence of the spin gap since their ope
representation involves vertex operators of spin bosons.

1. Spin-gap phase

In the gapped phase, the spin boson fieldws acquires an
expectation value in the setws52np/A2Ks where nPZ
which labels the manifold of degenerate ground states in
gapped phase. Since the value of cos(AKs/2ws) alternates in
this set, the expectation value ofOe vanishes in this phas
and the single-electron tunneling is~exponentially! sup-
pressed in this regime.~This is a natural result since th
electron carries spin 1/2.! Therefore, the lowest-order tunne
ing process that can contribute to a charge transport ac
the barrier is the singlet-pair tunneling, which is possib
only through a point contact for both the spin-gap phase
gapless phase. Although this is a two-particle process,Opair
can still lead to a ZBC peak even in this spin-gap phase if
Coulomb interaction is strong enough so thatKc,1/2 which
makes this operator relevant as we mentioned earlier. H
ever, sinceOs is relevant and allowed everywhere along t
barrier in the spin-gap phase (Os is the operator that cause
the spin gap!, there is a perfect spin tunneling in the absen
of charge tunneling even in the absence of a point cont
The mechanism behind this effect in the spin sector is sim
in spirit to the explanation of the ZBC peak in thecharge
tunneling conductance proposed by Mitra and Girvin.14 In
fact this phase looks very much like a superconductor w
out phase coherence.43
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2. Gapless phase

In the gapless phase,Oe or Os also are allowed only at a
point contact and whether any of these operators are rele
or not depends on the Luttinger parameters. The effec
three tunneling operatorsOe , Opair , andOs at a point con-
tact in the gapless phase is summarized in Fig. 8 as poi
out earlier by Kane and Fisher.4 The crosshatched region i
where the single-particle tunneling operatorOe is relevant
and we expect the peak in both the spin tunneling cond
tance and the charge tunneling conductance. In the d
shaded region to the left of the dashed line, the charge-o
tunneling operatorOpair is relevant. Analogously, the spin
only tunneling operatorOs is relevant in the lightly shaded
region below the dotted line. Note that one has to keep
mind thatKc,1 because of the Coulomb interaction.

For the SU~2!-symmetric gapless case~with ferromag-
netic exchange! in which Ks51, the ~boundary! scaling di-
mension of the electron tunneling operator is (Kc11)/2
,1, sinceKc,1. Thus, the single-electron tunneling term
a relevant perturbation, and the coupling constantG flows to
strong coupling in this case. Therefore, there should also
zero-bias peak in the tunneling conductance in the case
n52 spin-singlet quantum Hall state, with qualitative
similar properties as the zero-bias tunneling peak for
spin-polarized case. With ferromagnetic exchange inter
tions and Ising-like anisotropy, in which case the system is
the gapless phase independent of the strength of the Zee
term, Ks.1, and Fig. 8 implies that holon-pair tunneling
always irrelevant in this case. However, if 1,Ks,22Kc for
weak ferromagnetic interactions, the single-electron tunn
ing is relevant. Also with a strong enough Coulomb intera
tion, singlet-pair tunneling can become relevant. Finally,
a phase in which the gap is washed out due to a str
Zeeman term,Ks,1, and again the single-electron tunnelin
is relevant.

To summarize, in both the spin-gap phase and gap
phase, there is no charge tunneling current in the absenc

FIG. 8. The phase diagram nearn;2. The peak in both the spin
tunneling conductance and the charge tunneling conductance i
pected in the crosshatched region below the lineKc1Ks52 where
the single-particle tunneling operator is relevant. On the other ha
the charge-only tunneling operatorOc and the spin-only tunneling
operatorOs , respectively, are relevant in the dark shaded region
the left of the dashed line and lightly shaded region below dot
line.
7-14
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a point contact. In the gapless phase, there underlies a q
tum phase transition in the single-electron tunneling proc
through a point contact which leads to the reappearanc
the zero-bias peak nearn;2 in a manner similar to the fully
polarized case of the previous section. On the other ha
even though the single-electron tunneling is exponenti
suppressed in the spin-gap phase, an analogous crosso
the singlet-pair tunneling channel can lead to the reapp
ance of the ZBC peak~in the regime of strong Coulomb
interactions!. This scenario is consistent with the experime
tal observation which displays a very close similarity b
tween the manner in which the peak region appears abru
and disappears gradually in bothn;1 andn;2. Since the
operatorOe mixes the spin and charge sectors, in the regi
in which this operator is relevant it induces a nonzero t
neling current of both charge and spin. Hence, if the
served ZBC peak nearn;2 is indeed caused by the singl
particle tunneling operator in the phase without a spin g
we expect that aspin conductancepeak should be observab
nearn;2 but not nearn;1, in marked contrast to charg
conductance which would show a ZBC peak near both fill
factors.

In this section, we extended the picture we advocated
the previous sections to the case of small spin polariza
nearn;2 and investigated the changes in physics brou
about by the electron spin. It was pointed out that the in
play between the Zeeman term and the exchange term
ables us to identify two different phases in terms of their s
transport properties even in the absence of any point-con
operator: a spin-gap phase in which the spin excitati
along the edge are gapped, and hence perfect spin tunne
and a phase with gapless spin excitations. In both ca
there is no charge tunneling current in the absence of a p
contact. Since in most cases of physical interest the e
states are likely to be in the gapless phase at least for a l
enough Zeeman interaction, we proposed that here too t
is a crossover in single-electron tunneling processes thro
a point contact, leading to the reappearance of the zero-
peak nearn;2. In our picture, the apparent similarities
the patterns in which the peak region begins and disapp
near two filling factorsn;1 andn;2 in the experiment by
Kang and co-workers can be understood in a natural
consistent way. The reappearance of the peak region nen
;2 had been totally unexplained in previous theories of t
neling between laterally coupled FQH states.14,16 We also
discussed a number of interesting two-particle tunneling p
cesses and the interesting behavior of spin tunneling in th
systems.

V. CONCLUSIONS

In summary, in this paper we proposed a theoretical
planation of the questions raised by experiments of Kang
co-workers,12 by modeling the system as a pair of coupl
chiral Luttinger liquids with a point contact. Using standa
bosonization methods we mapped the problem to the tun
ing problem in Luttinger liquids first discussed by Kane a
Fisher.4,5 Our results show that the interedge Coulomb int
action reduces the Luttinger parameter and moves the sy
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deep into the strong-coupling regime forn;1, leading to the
appearance of a zero-bias peak in the tunneling conduct
with a peak value atT50 of Gt5Ke2/h, with K,1. We
mapped the problem onto integrable boundary sine-Gor
theory and used the known exact results of the BSG prob
to obtain predictions for the behavior of the tunneling co
ductance. By considering a special solvable case, we de
mined the behavior of the conductance for all temperat
and voltages. We investigated several crossovers of inte
by introducing an appropriateb function. This analysis
showed that the crossover between theT50 behavior and
the V50 behavior yields a natural explanation of the lo
value of the ‘‘zero-bias conductance peak’’ measured in
experiment.12 We also showed that the gradual disappeara
of the peak as the filling factor is increased pastn;1 can be
ascribed to the crossover betweenT,TK andT.TK .

Furthermore, we considered the role of spin in this tun
junction and showed that the reappearance of the ZBC p
in the region near the filling factorn;2 can be understood i
we assume that there is a~possibly small! spin polarization
nearn;2. We extended the approach we used for fully p
larized electrons withn;1 to partially spin-polarized and
unpolarized electrons withn;2, by taking into account the
role of Zeeman interactions, exchange interactions, and m
netic anisotropies. We discussed in detail the phase diag
of the system in this case and showed that the tunne
signature depends on whether the spin sector is gappe
not. We showed that the picture nearn;1 can be naturally
extended to this new regime and that the single-particle t
neling operator can also give rise to a zero-bias tunne
conductance peak in both charge transport and spin trans
in the gapless phase. Higher-order~multiparticle! point-
contact operators can in principle lead to charge-only
spin-only tunneling, depending on the value of Luttinger p
rametersKc andKs . On the other hand, we found that sp
transport along the edge is gapped even in the absence
point contact when the Zeeman term is small and if there
a very weakXY-like magnetic anisotropy or if the exchang
interaction is antiferromagnetic. In this regime we expe
perfect tunneling of the spin current, which suggests fut
experimental tests of these ideas. Even though the sin
electron tunneling is exponentially suppressed in the sp
gap phase, the singlet-pair tunneling can lead to a ZBC p
in the presence of a strong Coulomb interaction.

Our scenario is based on the assumption of a single
neling center. When the bias voltage and the coupling
tween edge modes on each side of the barrier are w
enough to give a low peak in the tunneling conductance, a
observed in the experiment, the scenario of tunnel
through a single tunneling center is quite likely to be
accurate description of the physics. Even though our pict
is applicable only near~and above! n51 andn52, it offers
a natural explanation of many salient features of the exp
ment which were not explained so far. This picture offers
consistent explanation for the reappearance of the ZBC p
and of the observed similarity in the manner in which t
two peak regions nearn;1 andn;2 appear and disappea
Our results also indicate that temperature should play an
portant role and that a temperature dependence of the da
7-15
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needed to understand what is going on. In particular we p
dict that as the temperature is lowered the crossover fil
factor n* will be lowered and that the width of the pea
region ~in the filling factor! as well as the height of the th
ZBC peak will increase. We also anticipate a region with
ZBC peak in spin conductance nearn;2 but not nearn
;1. We find that there is more than one mechanism thro
which spin tunneling can happen, and depending on
channel, the spin tunneling may or may not be accompan
by charge tunneling.

Although in this paper we considered only the simpl
possible case of a single tunneling center, it is interesting
investigate the effects of more than one impurity. While
have not investigated this problem extensively, it is clear t
there should be interesting interference effects if there
more than one tunneling center. Indeed, some time ago C
mon and co-workers44 proposed an experiment based on
two-tunneling-center device in the fractional quantum H
regime as a way to measure the fractional statistics of Lau
lin quasiparticles.
m
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We finally note that there is a recent paper by Carpent
Peca, and Balents45 on a related problem. Carpentier an
co-workers calculated the tunneling current between inter
ing Luttinger liquids constructed in a similar geometry as t
geometry of the experiment by Kang and co-workers. Th
showed that electron fractionalization can be probed fr
multiple branch points of the current density. However, bo
the effect of charging~leaking! from ~to! the bulk system and
the absence of a chirality constraint make the system con
ered in the Ref. 45 quite different from the system cons
ered in this paper in connection with the experiment by Ka
and co-workers.
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