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Interedge tunneling in quantum Hall line junctions
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We propose a scenario to understand the puzzling features of the recent experiment by Kang and co-workers
on tunneling between laterally coupled quantum Hall liquids by modeling the system as a pair of coupled chiral
Luttinger liquids with a point contact tunneling center. We show that for filling faciord the effects of the
Coulomb interactions move the system deep into the strong-tunneling regime, by reducing the magnitude of the
Luttinger parameteK, leading to the appearance of a zero-bias differential conductance peak of magnitude
G,=Ke?/h at zero temperature. The abrupt appearance of the zero-bias peak as the filling factor is increased
past a value* =1, and its gradual disappearance thereafter can be understood as a crossover controlled by the
main energy scales of this system: the bias voltdgthe crossover scalg , and the temperature The low
height of the zero-bias peak0.1e?/h observed in the experiment and its broad finite width can be understood
naturally within this picture. Also, the abrupt reappearance of the zero-bias peak@ican be explained as
an effect caused by spin-reversed electrons, i.e., if the 2DEG is assumed to have a small polarization near
~2. We also predict that as the temperature is lowefedhould decrease, and the width of the zero-bias peak
should become wider. This picture also predicts the existence of a similar zero-bias peak in the spin tunneling
conductance near far=2.
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[. INTRODUCTION served is considerably smaller than the quantum of conduc-
tancee?/h and the ZBC peak was observed over a fairly
The properties of the edge states of two-dimensional eledsroad range of filling fractions<e?/2h). The data of Kang

tron gase$2DEG’s) in high magnetic fields reflect the struc- et al'? show no ZBC peak in the tunneling conductance for
ture of the Hilbert spaces of bulk fractional and integer quanv=<1.
tum Hall (FQH) states. In the absence of edge reconstruction, The theoretical explanation of the experiment of Kang
the low-energy Hilbert spaces of the FQH edge states can kand co-workers has focused on the fact that it is not possible
represented by a suitable set of chiral Luttinger ligdids. to tunnel electrons between two perfectly aligned FQH edges
This identification brought considerable interest in the studywith opposite chirality’ Thus, if the barrier is assumed to be
of FQH edge states as a well-controlled laboratory for ex-atomically precise, the only way in which tunneling can pos-
perimental exploration of the quantum transport properties o$ibly take place is by the anticrossing of Landau levels be-
Luttinger liquids. Much effort has been devoted to thelonging to both sides of the barrigt.In the Landau gauge
theoretical® and experimental study of tunneling of both A=(0,Bx,0), where thex direction is chosen perpendicular
between FQH edge stafemnd into FQH edge statés. to the barrier and thg direction along the barrier, the single-
Measuremenfs of electron tunneling from a bulk-doped particle wave function has the forma(x,y) = exp(ky) @ (X)

GaAs electron into the Sharp edge of a FQH state with ﬁ”ing\Nhere ¢)k(x) is an eigenfunction of the Hamiltonian
fractionsy<1 have confirmed the existence of both the scal-

ing regimé® and the crossover behaviopredicted by the

chiral Luttinger liquid picture. However, many important H(X)=— =—— —+ Emwz(x—klz)2+VB(x) (1)

open guestions remain about the actual observed behavior of 2m g2 2°F '

the tunneling exponent and its consistency with the physics

of the bulk FQH stategsee, for instance, Refs. 4 and 9-11, with Vg(x) a potential due to the barrier which is symmetric

and references thergin aboutx=0. The dispersion curves originating from the two
Recently, Kang and co-workéfshave measured the dif- systems on both sides of the barrier overlap ardua®. At

ferential tunneling conductance of a device in which twothe crossing points, gaps open as a consequence of a cou-

2DEG’s in the integer quantum Hall regime are laterally pling between the counterpropagating edge stst@is is

coupled through an atomically precise tunneling barrierindeed the scenario assumed in the work of Kang and

Their data show a very sharp and intense differential conduazo-workerd? and by Mitra and Girvit* Lee and Yang?

tance peak of heigh&,=dl,/dV~0.1e’/h at zero bias for Kollar and Sachde¥f and by an earlier calculation by Taka-

certain ranges of magnetic field on top of an oscillatory be-gaki and Plood.

havior, which appears in qualitatively the same manner for In this picture, the appearance of a zero-bias conductance

all ranges of magnetic field. The data show an abrupt appeapeak is ascribed to the existence of a gap in the spectrum of

ance and the following gradual disappearance of the zeraedge states at the barrier, since a gap suppresses the conduc-

bias conductanc&BC) peak as the filling factor is increased tion channel along the barrier provided by unmixed edge

past the apparent threshold valu§s=1 andv3 =2, respec- states with opposite chirality formed by the barrier. Mitra

tively. In both cases, the height of the ZBC peak they ob-and Girvinl* as well as Kollar and Sachdé¥pbserved that
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electron-electron interactions yield a substantial modificatiorthe setup of Ref. 12 is that it can explore not only the effect
of the gap which cannot be accounted for by level mixingof backscattering through @resumably point contact, but
arguments. In these theories, the gap is equal to the solitaso the effects of electron-electron interactions along the
energy of a quantum sine-Gordon model, derived from adges.
microscopic theory of the barrier. Notice that, due to the Our analysis shows that the electron-electron interaction
Landau level mixing induced by the barrier, the effectiveplays a crucial role in the tunneling conductance. Electron-
Fermi wave vector of the barrier stateskjs=0. Thus a gap €lectron interactions turn the pair of edge states into a single
in the spectrum does not require backscattering in this geonftonchiral Luttinger liquid with an effective Luttinger param-
etry. In particular, Mitra and Girvilf used a Hartree-Fock eter K<1 for filling factors »=1. This problem can be
theory to calculate the Luttinger liquid parameter, the collecimapped onto the problem of a junction in a Luttinger liquid
tive mode velocity, and the momentum cutoff of the effectivefirst studied by Kane and Fish&?,with a Luttinger param-
sine-Gordon theory. It was found that the Coulomb interaceter reduced from 1 due to the effects of the Coulomb inter-
tion, which is taken into account in Hartree-Fock theory,actions along the barrier, which brings the system to the
leads to a substantial enhancement of the gap. More recentfsirong-tunneling phase if it were @t=0. In Refs. 4 and 5,
Kollar and Sachdelf used a method of matched asymptoticsKane and Fisher pointed out that f&r<1, tunneling at a
to determine the momentum cutoff for sine-Gordon theorypoint contact is a relevant perturbation and the system flows
The gap they found is larger than the result of Mitra andto a strong-coupling regime. Whil€<<1 suggests that the
Girvin. threshold for a zero-bias peak should be observed at a filling
However, even with the gap obtained by Kollar andfactor somewhat below=1, we find that there is a non-
Sachde¥’ it is not possible to understand the height of thetrivial temperature dependence of the height and width of the
zero-bias conductance peak. Both Refs. 14 and 16 predict arero-bias peak induced by the renormalization flow of the
general grounds a zero-bias peak with heighth, larger  tunneling operator.
than the experimental result @%h of Ref. 12 by approxi- We studied the effects of finite temperature by mapping
mately one order of magnitude. Furthermore, in this picturghe problem to the boundary sine-Gord@BSG) problem
the ZBC peak is expected above the second Landau level iwhich is exactly solvable. By combining a number of known
the noninteracting system, whereas the peak region wagxact results of the BSG theory with the calculation of an
prominent neawr* ~1 in the experiment(Interaction effects appropriate renormalization groyp function, we suggest a
do not modify this result in any essential wagiven these natural explanation of the salient features of the experiment
facts it was argued in Refs. 14 and 16 that effects of disordeof Ref. 12. We studied in detail the crossover behavior of the
may be ultimately responsible for these discrepancies bgunneling conductance as a function of temperature and
tween theory and experiment. found that it can explain qualitatively the observations of
In search of an answer to these questions, we reexamindgef. 12. We find that finite temperature is responsible for
the alternative scenario of tunneling between countercirculatooth the low height of the peak and its gradual disappearance
ing edge states through an imperfection of the tunneling bawhen the filling factor is increased past- 1. Further experi-
rier. We were motivated partly by the observation that themental studies of the temperature dependence of the zero-
effects of anticrossing induced by the barrier are not exbias peak can check these theoretical predictions. In particu-
pected to occur at least before the second Landau level béar we give an explicit expression for the temperature
gins to be filled, which is not the regime in which the zero-dependence of the differential conductance at zero bias volt-
bias peak first appears. Thus we will assume the morage for the particular value of the Luttinger parameter
standard situation of a barrier separating two FQH states1/2. For more general values of the Luttinger parameter
with edges of opposite chirality and nonvanishing Fermithe solutions are more complicated but nevertheless vary
wave vectors. Under these circumstances tunneling is onlgmoothly and slowly wittK (see below. Although the data
allowed if impurities and imperfections are present. This is @hat have been published so far of the experiment of Kang
possibility that must be considered seriously particularlyand co-worker¥ are at a temperature of 300 mK, unpub-
given that in the end impurity scattering is invoked as thelished data from the same group in the temperature range
explanation for the magnitude of the zero-bias peak, as adrom 300 mK b 8 K are well described by our resufs.
vocated in Refs. 14 and 16. Thus, in this paper we will as- We have also studied tunnel junctions at a barrier in par-
sume that the barrier is precise enough to have just a fewally spin-polarized QH states. We find that the reappearance
imperfections which act as weak tunneling centers. In facof the peak region near~2 can be explained if the electron
we will assume that there is just one such tunneling centergas is not fully polarized but instead has a small spin polar-
In the situation of the experiment of Kareg al., where ization. We also consider in this paper the interesting case of
right- and left-moving edges were spatially separated by a line junction in a spin-singlet=2 state. We find that for
barrier, a local deformation of the edges due, for instance, tthese QH states, at=2 a spin-spin interaction across a
an impurity can result in a weak tunneling center whichsingle point junction leads to a number of interesting effects
mimics the pinch-off effect of the patterned back gate elecin both spin and charge transport across the junction.
trode of the experiment by Milliken, Umbach, and Webb.  This paper is organized as follows. In Sec. Il, we intro-
The authors of Ref. 6 have observed expected temperatudkice the model for a IQH-barrier-IQH junction with a single
dependence of the tunneling conductance through the poititinneling center and bosonize the model. In Sec. Ill we map
contact®!® for »=1/3. However, a quite unique feature of the model to the integrable BSG model by using a standard
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matrix element. The right- and left-moving branches repre-
R sent the edge states of twe=1 QH states laterally coupled
by the barrier. These edges have nonvanishing Fermi wave
< 7 o vectors equal in magnitudéor a symmetric barrierand
) X v with opposite direction, indicating the chiral nature of the
—— = e edge states. Backscattering is forbidden everywhere due to
L momentum conservation, and in the absence of a periodic
potential there is no umklapp scattering. The electron-
electron interactions are thus purely due to “forward scatter-
ing” both intraedge and interedge, which conserve chirality.

FIG. 1. Aline junction with a single backscattering center. The . .
J g g 'Il'hus, under these assumptions, the pair of edge states be-

two shaded regions and the space between correspond, respectiv% \ ffectively lik inal hiral di - |
to two regions of 2DEG of widths 13 and 14m and the 88-A- aves effectively like a single nonchiral one-dimensiona

thick Al ,Ga, AS/AlAs barrier of 2DEG-barrier-2DEG junctions Luttinger liquid, with an effective velocity, and an effec-
used by Kanget al. The single tunneling center is represented by ative Luttinger coupling constarg.. The main effect of the
cross in the figure. The system is equivalent to a one-dimensiondMpurity is to provide for a backscattering center at the im-
Fermi system with right- and left-moving branches, interacting withpurity site which we will define to be the origix=0 (see
each other through short-range interactions. Fig. 1). The model that we will discuss and solve for two
coupledv=1 edges with opposite chirality can be easily
folding procedure. The result will be used to understand th@xtended to discuss the same issues for fractional quantum
experiment near=1. In Sec. IV we propose an explanation Hall states. However, for reasonable values of the dimen-
for the experimental results near=2 with the assumption sionless coupling constaidefined below the resulting ef-
that there is a small spin polarization fer=2. Here we fective Luttinger parameter is always in the rarge-1 in
generalize our analysis and discuss the role of exchang&hich tunneling is suppressed and no ZBC peak can be ob-
Zeeman, and magnetic anisotropy interactions on the tunnegerved. Thus, for the rest of this paper we will restrict our
ing processes. Finally, in Sec. V we review our main resultgliscussion to the case>1 in which there are no fractional
and give some predictions on future experiments based ofuantum Hall stategfor fully polarized systems
our analysis. The system can thus be treated as if it were effectively
one dimensional, i.e., as if the right- and left-moving
branches overlapped with each other and were coupled via a
screened Coulomb interaction. Following Wen’s hydrody-
We begin by briefly describing the experimental setupnamic approach;® the edge states of oppositely moving
(see Fig. 1 and the most salient results of Ref. 12. Themodes are described in terms of normal-ordered right- and
2DEG-barrier-2DEG junctions used by Karegall?> con-  left-moving densities) . which satisfy equal-time commuta-
sisted of two regions of 2DEG of widths 13 and 14mn, tion relations in the form of &J(1) Kac-Moody algebra:
where the electrons reside in the two-dimensional interfaze i
of the GaAs-AlGaAs heterostructure, separated by a 88-A- N — oy
thick Aly,Ga,6AS/AIAs barrier of height 220 meV. These [0, J= ()= F 57 050 =X, @3
junctions are believed to be atomically precise, which mean o . L . .
that they have very few defects on their entire length. In thjhe Hamllt(?man densnxfor the line Jrl]mctlon T“aly ge wrr:tten
experiment the conductance &t 300 mK showed an oscil- as a sum of two term&=7{g+ 7, where7{s includes the
latory behavior as a function of bias voltage with successivee‘creaS of both mtgredge and |ntraeQQe '|nteract|ons, Hpd
peaks spaced by an energy of the order of the cyclotroﬁepresents tunneling term 2&=0. Hg is given by
energyh o, in the full range of magnetic field. This effect _ 2, 72
suggests that there is a mixing between Landau levels en- Ho=muo(J= 35 +200).J-), 22
abled by a level shift due to large bias voltage. However, fowhere we assumed the speed of right- and left-moving elec-
fillings v=nh/eB=1 andv=2, a sharp conductance peak trons to be same with, and the third term stands for the
dominates at zero bias. The peak heights weree/h2and  density-density interaction between chiral electrons.
0.11e?/h, respectively, for the samples published, but the The dimensionless coupling constaspt, which measures
height typically varies from sample to sample, always beinghe strength of the interaction, can be estimated togpe
of the order of 0.&%/h.%° ~U/Eg where, for the case of Coulomb interactions,
The model Hamiltonian for the setup of the experiment of=e?/ed whered is the effective distance between the two
Kang and co-workers that we will use here is a variant of theedges is the static dielectric constant, aig is the Fermi
one considered by Kane and FishérWe will make the energy for the edge states, assumed to be the same on both
simplifying assumption the electron-electron interactions asides of the barrier. It is important to keep in mind that in
the barrier are sufficiently well screened so that they can beractice there is no reliable way to determipein terms of
represented by effective short-range intraedge and interedgeicroscopic parameters. Still, this lowest-order estimation
interactions. While this assumption is not fully justified it implies that the Coulomb interaction must be fairly strong in
represents a minor change to the physics of the system. Thuhie actual experimental setup. In any case, we expect that the
the effects of the width of the barrier are included in thedimensionless coupling constamtshould be a smooth func-

1. MODEL HAMILTONIAN
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tion of the bulk filling factorrv and of the thickness of the =>—R

barrier. Intuitively we expect that as the filling factor in- (a) < X

creases, either by raising the electron density or by decreas-

ing the magnetic field, the effective distance between the

edges of the two quantum Hall liquids will decrease. Conse- (b) X >

guently we expect that the dimensionless coupling constant A (—

g. will increase as the filling factor increases. We will see _ )
below that this effect will play an important role in the ex- FIG. 2. Two phases for the system described by the Lagrangian

planation of the effects seen in the experiments of Kang ande"sity: £a.2.10, depending on the value of the Luttinger param-
co-workerst2 eter K defined by Eq.(2.9) at T=0. There is a quantum phase

We will represent the effects of backscattering at the unlransition atk=1 between two phaseRef. 4. (a A perfectly

nelin nter(at the origin b | | tunnelin rator conducting regime foK>1, which corresponds to no tunneling in
eh' f? .Cet ena fe. ?ﬂg dyl e;t ocal tu Ie tg ope at.o our problem, andb) a perfectly insulating regime fd€ <1, which

which n terms of right- and Ieft-moving electron creation corresponds to the perfect tunneling in our problem.

and annihilation operators has the standard form

— T T 1—
H=t( g+ gl ) 800, @3 K=\ v=voVi-gk 2.9

wheret is the tunneling amplitude.

_ We will solve this problem using the standard bosoniza-jith these definitions the Lagrangian density for the line
tion approach! The right- and left-moving chiral Fermi junction with a point contact at=0 becomes
fields are bosonized according to the Mandelstam formulas
1 1
= — — + — — —
lﬂ-_r,_(X)ix 1 etid=(, 2.4 4,n_ax(P+(at Vdx) P+ 4,n_ax(P—( h—vdy) e
- N2

— 80T cog VK(g4 +¢)]. (2.10
where ¢.. are chiral right- and left-moving Bose fields, re- !
spectively. In the notation of Ref. 8, the Lagrangians for theBy comparison with Ref. 8 we see that the Luttinger param-

decoupled edges are eterK plays the role of an effective inverse filling factor
1 =1/K. With the notation that we are using heéfeplays the
Loldbil=—0 b (*o—0nd )b . 2 role of the constang defined in Ref. 4.
+[42] 4 xf(£0"v0d) bs 29 Kane and Fisher studied transport properties of a one-

8imensional electron gas with a single impurity in Ref. 4 and
predicted a change in the nature of the transport across the
point contact(the impurity at T=0 depending on the value

of Luttinger parameteK, finding perfect transmission for

The normal-ordered density operators are bosonized accor
ing to the rules

1
Ji=— Z—axqsi . (2.6 K>1 and perfect insulating behavior f&r<1 due to a com-
77 plete backscattering at the impurity; see Fig. 2.
In terms of the chiral boson fields. , the full (bosonized As discussed in the caption of Fig. 2, perfect conduction
Lagrangian density is along the wire in the Kane-Fisher probl&Pcorresponds to

conductiononly along the barrier in our problem and, hence,
1 to the complete suppression of tunneling across junction in
L= 7—0xh+ (= v0dx) b+ 71— dxd- (= vodx) P our case and vice versa. However, we should keep in mind
that the expression of EQR.9) can be the correct expression
(o] for the Luttinger parameter only when the dimensionless
- E&X¢+(9X¢— —o(x)I'cod b, +¢-), (2.7 coupling constang, in Eq. (2.2) is small. From our previous
estimation ofg, we found that to lowest order i0/Eg, g,
whereI" measures the tunneling amplitude. As usual, thiss substantially large. Hence the effects of irrelevant opera-
system is diagonalized by t@ogoliuboy transformation  tors not included in the Hamiltoniaid cannot be ignored as
they will give rise to finite, and presumably not small, cor-
_K+1 K-1 rections to the functional dependence of the Luttinger param-
b+ _W“’* + ﬁg"* ’ eterK on the dimensionless Coulomb interactign Never-
theless, what matters is that even after all these corrections
(2.9 . . .
K_1 K41 are accpunted for t_here is an eﬁectlye Luttinger pararﬂé,t_er
b =———p t——q_, albeit with a complicated but analytic dependence on micro-
2\/R 2\/R scopic parameters. Thus we can still define an effective cou-

and the choice oK that diagonalizes the system is the effec-Pling_constantg. through an identity of the formK

tive Luttinger parameter. Letting denote the renormalized =V(1-9c)/(1+gc), where g.(v)=f(g:(¥))=09c(v)
velocity, respectively, the effective Luttinger parameter and+ O(gg). Therefore all we can tell from E@2.9) is that the
the renormalized velocity are given respectively by Luttinger parameter will become substantially smaller than 1
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due to Coulomb interaction effects. However, what mattersnap each of left-moving fields defined on the whole line
here is that this condition is sufficient to bring the junction and¢, to nonchiral fieldsb, and®, defined on the half-line
deep into the backscattering phase at zero temperature whetg=0. These nonchiral fields are decomposed into their
backscattering is a strongly relevant perturbation. In this reright- and left-moving parts:

gime the perturbative approach of Kane and Fisliemot
enough to determine the transport properties at finite tem-
perature. Fortunately, this problem can be mapped to an ex-
actly solvable boundary sine-Gordon problem which will en-

able us to go beyond the perturbative regime. We analyze the . . ,
problem from the perspective of BSG theory in the nextWhere the right-moving parts of the fields come from the
X1>0 parts of thep fields, and the left-moving parts of the

Do(Xg,X1) =Pg _(Xg+Xg) +DPe + (— X1+ Xo),

(3.5

Do(Xg,X1) =Dy _(Xg+Xg) + Dy + (—X1+Xp),

section. i )
® fields come from the; <0 parts of thep fields:
I1l. TUNNELING CONDUCTANCE NEAR w»=1 ¢e’+(x)5¢e(x) ®Oy+(X)Ecpo(X) for x,>0,
A. Mapping to the boundary sine-Gordon model (3.6
q)e,—(X)EQDe(X) (Do,—(X)E_‘PO(X) for x;<0,

In order to make contact with the results of Fendley, Lud-
wig, and Saleur, we will now map the effective Lagrangianwyith D+ =0 forx;<0 anddg, =0 forx;>0. In terms
of Eqg. (2.10 to the boundary sine-Gordon theory. To that of the ® fields, the Lagrangian density on the whole line of
effect we will perform a parity operation— —x acting only  Eq. (3.2) is mapped onto a Lagrangian density on the half-

on the left-moving fielde_ by which it now becomes a |ine x,=0,

right-moving chiral boson, still denoted kyy_ . Let us define

the even and odd linear combinations(oght-moving chi- 1 1 r K

ral fields L= g(aﬂcbe)%r g(apo)?— 5(x1);cos( \@cpe) .

(3.7)

In Eq. (3.7), the odd bosomb, remains free, simply obeying
Neumann boundary conditions at the orign(x;=0)=0,
and decouples. In contrast, the even fidld, which from
now on will be denoted byp for simplicity, has a nontrivial
dynamics governed by the Lagrangian density

1 . r \/R
L= 5(%@) —5(x1);c0 E(I)

defined forx;=0. The (ever field & and obeys Neumann
boundary conditions at botky =0 andx;— .

The action of Eq.(3.8) is known as the boundary sine-
Gordon model and is a well-studied integrable quantum field
theory?’ It is a theory of a free scalar field coupled to the
vertex operato®=exdiK/2®(0t)] at the boundary. The
main physical effect of the tunneling operator is to induce a

1
(Pe_ﬁ((PJr'i"P—)y
(3.1
=i(— +o_)
QDO \/E §D+ (p,,

in terms of which the Lagrangian takes the simpler, decou-

pled, form (3.9

1 1
L= Eaxﬁoe(at_ Uax)‘Pe+E‘?x¢o(at_ Vx) @o

— 8()T cog V2K g)]. (3.2

In terms of the right-moving chiral bosons, and ¢,, the
edge currentd . become

K 1
Jomt ——— o~ ———— s,
T a2k P ok KFe
(3.3

flow of boundary conditiorf§ (BC’s) atx;=0: for'=0, ®
obeys a Neumann BC at =0, whereas fol'—»~ ® has a
Dirichlet BC atx,;=0. The(boundary scaling dimension for
the operator© at the weak-coupling fixed poirff —0 is
do=2(JK/2)?=K. Thus forkK<1, as in our case, the tun-

K 1
t ————=0x@ot ——=—=0Pe-
2m\2K 272K neling operator is relevant and the weak-coupling fixed point

In the presence of the point contact, the current along th& unstable. Conversely, in this regime the strong-coupling
junction splits into a backscattering or tunneling current and*€d point is stable. On the other hand, f&r>1, O is

a forward-scattering or transmitted current. The tunneling'Télévant at the weak-coupling fixed point and the system is
currentd,=J, —J_ is given by more appropriately described by a dual picture as in the case

discussed in Ref. 8. This is the conventional situation in the
fractional quantum Hall regime. In our case, the Coulomb
interaction reduced the value &f to be smaller than 1,
leading to a situation similar to the one considered by Fend-
and it depends only on the chiral boseg. ley and co-workerd? who investigated the problem of inter-
In order to map the problem to the boundary sine-Gordoredge quasiparticle tunneling in a FQH state.
theory we will use the standard folding procedae?® Let We note in passing that in general, as noted in Ref. 22,
Xo=vt denote a rescaled time coordinate and=x. We  4kg processes should be fine-tuned to zero if<1¥k9<1/4

1 2

Ji=— E Rax@ev (3.9
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for the system to be integrabl€lhis is so because only one S F K=1/2
relevant perturbation is allowed for integrabilfy. Fortu- o0 al® -
nately in the case of interest her&dprocesses are forbid- ~ == K=1/3
den in a chiral system with only one tunneling center. Hence G 0.3 ‘i K=1/5
the system we are interested in is automatically fine-tuned -
and the problem is integrable even #x 1/4. 01 4\

The (masslessboundary sine-Gordon theory, regarded as te
the massless limit of the conventional bulk sine-Gordon 0 \7————-f
theory, was shown to be integrable by Goshal and 0 2 4 6 8 10
ZamolodchikoV?” who also determined the spectrum of the eV/T
BSG system by means of the thermodynamic Bethe ansatz K
(TBA) for an arbitrary value of the Luttinger parameter FIG. 3. The differential tunneling conductance at zero tempera-

The spectrum contains a kink and an antikink ame 2 ture vseV/Tx. Each dotted, dashed, and solid line represénts
breathers fon—1<1/K<n. The case&K=1/2 is special in =1/2,K=1/3, andK=1/5, respectively. All three curves share the
that there is no breather and the even boson theory can lmemmon feature of a rapid increase in t@g as the voltage is
represented in terms of free fermions. In this case, kinks antdwered pasfT followed by the saturation o, to the value de-
antikinks are just particle-hole transforms of ordinary fermi-termined by the Luttinger parametiie’/h at V/T¢=0.
ons. Although this problem is solvable for any valuekaf . . .
the TBA computation is much simpler forkl~m, wherem B. Comparison with the experiment
is an integer(in this case the bulk scattering matrix is com-  We have shown above that the problem of the point con-
pletely diagona). Since we are interested in the regirde  tact in two laterally coupled FQH liquids maps onto the
<1, we will focus in what follows on the cageé= 1/m, with  poundary sine-Gordon theory. In particular we showed that
integerm. the effective Luttinger parametét plays the role of an ef-

In the problem of transport through a point contact withfective inverse filling factor. In this picture the point contact
1/K integer there is a dynamically generated sdalewhich  maps onto the problem of the tunneling of electrons between
uniquely determines the low-energy physic$™ (in this g edges with filling factorv=1/K>1. Fendley, Ludwig,

problemTy plays a role similar to the Kondo temperature in 5nq Salel? (FLS) solved a very similar problem but in the
the conventional Kondo problem of a magnetic impurity in aregime7<1. FLS also found that, af=0 and voltageV,

metallic host) The scal€Tk is a function of the point-contact the tunneling current obevs the exact remarkable dualit
interaction strengt’ and of the ultraviolet cutoff scald. 9 y Y

Tk is an energy scale separating the low-energy, long- ez _ _
distance regime(IR regime and the high-energy, short- |(TK,V,V)=FVV—V2|(TK,V,V71). (3.11)
distance regimgUV regime); Tx can also be viewed as the

temperature at which the weak-coupling expansion breakbsing this result we find that the differential tunneling con-
down. One of the fundamental properties of quantum impuductance at zero temperature for our problem is giver- 8y
rity problems like point-contact tunneling or the Kondo

model is that observables, such as the differential conduc- - NG (K i-1) gy 5
tance in the point-contact problem or the magnetic suscepti- e? 1_21 ca(K™9) T_K T_K<e '
bility in the Kondo problem, are described in the scaling G,=K—x<{ _

regime by universal scaling functions of the temperaflyre h D eV|2nk-1) ev_
the bias voltagd/ (H/T for the Kondo mode| the coupling = Cn(K) Te T—K>e '
constantl”, and the(ultraviolet cutoff A, of the form (3.12

G(AV,T,.T) — G(T/T,VIT), (3.9 where the coefficients, are defined as
T,V<A

B i L (NK+1) (172

where the dependence of conductance upon cutoff and inter- Ca(K)=(=1) T'(n+1) T(n(K—1)+1/2)’
action strength is hidden in the definitionBf .>>?® Fendley (3.13
and co-worker% find a dependence daf, onT of the form

where I'(z) is the gamma function.(Here §=[KInK

T.=Cr/a-K (3.10 +(1-K)In(1-K)])[2(1-K)] is a parameter that determines
: ’ the radii of convergence of these serjes.
whereC is a nonuniversal constant. In Fig. 3 we plotG; at zero temperature for different

The rest of this section will be devoted to an analysis ofvalues ofK as functions o V/ T (in units ofe?/h). We can
the implications of the known results for the BSG model tosee from the plot that the differential conductance increases
the tunneling contact problem that we are interested in and toapidly as the voltage is lowered beldlik and that it satu-
its implications for the experiment of Kang and rates rather rapidly to a value determined by the Luttinger
co-workers'? It will be shown that both the Coulomb inter- parameteKe?/h atV/T,=0 at zero temperature. Recall that
action and finite temperature play important role in the be£q. (3.12 is valid only forK<1 where the tunneling opera-
havior of the zero-bias conductance peak nearl. tor is relevant® The experiments of Kang and co-workers
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are done in the reg_imezl. Thus here we consider the edge dependent crossover scdlg (I'* (T),K). Furthermore, now
states of two nominally=1 quantum Hall states but take photh temperature and external voltage act as natural cross-
into account the effects of the interedge interactions whichyyer energy scales. From the point of view of our scenario
make the Luttinger parametér<'1. In the fractional regime  finjte temperature plays important role in understanding the
the bare value oK is greater than 1, and it is reduced in pecyjiar features of the experiment, which can be summa-
value by the interedge interactions. Thus there exists a Critli ad as follows

cal filling factor (or magnetic_ fieldl vo(gc) at whichK=1. (1) Existence of a region in the filling factor with the ZBC
For v>v. we haveK<1 while for v<v. we haveK>1. peak

Therefore when the filling factor is increased past the (2) Substantially low height of the conductance peak as
tunneling operator becomes relevant and the tunneling am=. - sared to tvpical Hall conductanee?/h
plitudeI" flows to infinity (which makesTx grow to infinity 3pA .tygl | dth of th k ion bedinni

as wel), leading to a finite conductance at all bias voltages at (*) ppreciably large width of the peak region beginning
zero temperature. We note here that the theory presented h? = .
this paper, based as it is on a single chiral boson with com- (4) Disappearance of the ZBC peak ass increased be-

PN ; ; dv~1.
pactification radius 1 per edge, does not formally apply inY°" , ,
the fractional quantum Hall regime. Up to important subtle- (5 Reappearance of the ZBC peak in a region near and
ties which involve either additional neutral or topological abover~2.
edge modegsee, for instance, Refs. 91the fractional It turns out that, except for the reappearance of the zero-

regime can be viewed as a theory of two coupled effectivd®i@S Peak near=2, most of these effects can be understood

charge bosons, each with radiy®, and an effective Lut- within the point-contact scenario that we advocate here pro-

tinger parametéh( «=K/v. Thus in ihe fractional regime the vided thermal crossover effects are taken into account. The
e .

effective Luttinger parameter should be greater than 1 and ng appearance of the peak n_@afz \.N'" b? discussed in the
zero-bias peak should be seen in this regime. next section. The rest of this section will be devoted to our

. derstanding on the first four aspects.
For values of the Luttinger parameté€r<1/2 the tunnel- un . .
ing conductance3,, shown in Fig. 3 fork=1/3 and K A central feature of this problem is the powerful fact that

~1/5, becomes negative for sufficiently large values othe differential tunneling conductan€ is a universal scal-

eV/T . To understand this interesting feature we recall that"9 function of two dimensionless ratids Tc andV/T. First

the expression of the tunneling current &v/T >e? can be of all, the system behaves qual!tatively as If it wereTat
obtained from the second line of E(.12 in tKhe form =0 as long as the temperature is the smallest among three

energy scales, i.eT,.<Ty,V. In this regime the system flows
2y eV 2n(K—1) to the stable fixed point dt— < where the tunneling current
(V)= ——K >, an(K)<_) (3.14 is large and the conductance saturates to its largest value
h " i=1 Tk Ke?/h at ZBC. However, since the crossover scajeis a
(weak function of v, there exists a filling facton* for
which Ty (v*)=Tg~T. For T>T} the system will flow to-
1 ward the decoupled unstable fixed pointlat 0. Hence, in
1/2+—_cn(K). (3.19  contrast with the cas&€=0 we expect only a crossover, in-
n(K—1) . X :
stead of a phase transition. In particular this also means that,
Since the tunneling coupling should make the tunneling curat low but fixed temperatur€, we should see an appreciable
rent increase, one expeetg>0 which impliesc,(K)<0 for  increasein G, whenV becomes smaller thaf , sinceTg
K<1/2 from the above relation betweer; andc,. This  Will be finite at nonzero temperature. However\asecomes
negative value of; for K<1/2 causes the conductance to comparable ta the system will begin to be driven by ther-
become negative at large voltages and produces a dip in thgal fluctuations, and the coupling would no longer in-
conductance curve fok=1/3 andK=1/5 in Fig. 3. This crease further as the voltage is lowered, thus leading to a
phenomenon has same origin as the conductance along tRaturation of the tunneling conductance at a value deter-
quantum wire becoming larger thage?/h in Ref. 22 and  mined by temperature. Therefore, even though the ZBC peak
Koutouza, Siano, and Saleur reported similar phenomena ighould be observable due to an increas&ijras the voltage
their work where they considered the charging effect on thés lowered pasTy , the height of the pealessentially deter-
tunneling between quantum wirdsHowever, the negative mined by the temperaturavould be much lower than the
conductance is expected only for practically infinite driving zero-temperature saturation valde?/h. Conversely, if the
voltage at zero temperature sintg is infinitely large at the temperature is higher thary , thermal fluctuations dominate
strong-coupling fixed point and a numerical calculation offor all values ofV and no ZBC peak should be observed.
the TBA shows that this effect disappears for snvT.?2 On the other hand, in the regime where the filling factor is
Now let us turn to the finite-temperature case. In contrassuch thatK <1, the dependence @ik on the tunneling am-
to the zero-temperature behavior of indefinite running, theplitudeI' is such[see Eq(3.10] that as the filling factow
effective tunneling couplind” stops running at a certain increases, the exponent in the dependencd ofupon I
value I'* (T) determined by the temperature at finite tem-decreases. Hence, asis increased well past a value-1,
perature. As in all quantum phase transitihthis effect in  the crossover scal&, decreases, and at some point it be-
turn leads to the appearance of a finite temperatureeomes lower than the temperature. In this regime the junc-

with the coefficients, given by

an(K)=
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tion is effectively in the high-temperature regime and the
ZBC peak is absent. Thus, in the point-contact scenario, the 0.
gradual but rapid disappearance of the ZBC peak is a mani- 0.
festation of this crossover. G
This discussion can be made more explicit by looking at ¢ O
the behavior of the8 function defined as 0.
a.

This renormalization group function measures the change of

the effective COUP"”Q ponstarﬁ at temperaturel as the FIG. 4. The exact differential tunneling conductance given by
external voltageV is varied. The statement that the conduc-Eq. (3.20 is plotted as a function a8V/Ty for different values of

tance is a scaling function of the ratidsTy and V/T is  1/T, for K=1/2. Observe the lowering and broadening of the peak
equivalent to saying that one can define a set of systemgs the temperature is increased.

which have the same conductance as the external voltage is

varied. This set of equivalent systems amounts to a renormal- |n order to analyze thg8 function at finite temperature,

ization group flow defined by the Callan-Symanzik equationye now turn to theK=1/2 case in which an exad, is
known in closed form even at finite temperature, by refermi-
Gt (TITe VIT) = dGy N ar (9_(3't_0 (317 onizing the even boson theory to a noninteracting spinless
dinV Ko ~dlnV  dlnv ol T T free fermion. In this special case, not only the conductance,
_ _ _ but alln-point correlation functions are exactly solvatié3*
where the second term on the right-hand side of the firshng the integral in the E@5.2) of Ref. 22 can be reexpressed
equality comes from the fact thak has an intrinsic depen- in terms of the digamma functiog(x) =T"' (x)/I"'(x), lead-

dence upon the coupling constdnt Note that in Eq(3.17) ing to the expression for the conductance,
we chose to vary the energy scaleinstead of the cutoff

scale, which as usual is hidden in the definitionTgf. This 1e? Ty T eV
equation can be used to calculate fdunction defined in G(T.V.K=12)=5 - TRey'| o+ =+
Eq. (3.16: (3.20
dG; IG; The plot of Gi(T,V,K=1/2) as a function o&V/T for
7NV o several values of /Ty in Fig. 4 shows the broadening of the
BV, T)= e} = T 3G, (3.18 peak as the temperature is increased. The reduction and

—t - k77t eventual disappearance of the peak height at high tempera-
ar 1=K I' 9Ty tures is quite obvious in the plot of the ZBC peak height as a
function of T/Ty¢ in Fig. 5. One can also understand the
gradual disappearance of the ZBC peakvass further in-

. . . creased as following. From Eg8.10 and(2.9), we see that
As we shall see below, looking at the properties of {Bis _dI_K decreases as increases fok < 1. Therefore. as be-

function is a useful way to understand the temperature ancomes laraer at qivel. G. will be determined by lowel
voltage dependence of the differential tunneling conduc-Ieadin toga sma?ller ZB(tZ eak which would e)(/entuallf,dis-
tance, and in particular it provides a simple intuitive way to 9 P y

describe the crossovers. However, we should alert the readgp?l’iaer.role of temperature on the peak height can also be
that this “phenomenologically defined3 function does not P b 9

necessarily coincide with the standard definition of the renor>2€" by looking at the asymptotic behavior G{(T.V=0,

malization group(RG) 3 function which is obtained by the <~ 1/2) in the limit of T—0. At V=0,

flow in coupling constant space induced by integrating out a 1€ Ty 1 Ty

finite number of high-energy degrees of freedom. The stan- Gt=§ AT ’<§+ —T)

dard RGg function is by definition an analytic function of m m

the parameters. By scaling(I",V,T) of Eq.(3.18 isa di-  from Eq. (3.20. In the limit T—0, we can use the

mensionless function of the dimensionless rafié¥x and  asymptotic expansion of the digamma function,

VIT, whereTy encodes all dependence on the microscopic

coupling constant’. We will see below that thig function

is analytic everywhere except & (T) =(0,0), since the lim-

its V—0 andT—0 do not commute. ] ) ) ] )
At zero temperature, using E€8.12) it is easy to see that to infer the asymptotlc behavior of the peak height in the low

ViG,/0V=—TdG,/dTx, and we obtain the expected €mperature limit as

resulf? 162

Gi~— —
B(I'\V,T=0)=—(1-K)TI. (3.19 " 2h

where we used the relation betwe€p andI', Eq. (3.10),

for the second equality.

(3.20

1
¢(x)~|nx—5+~~, for |x|>1, (3.22

1 WT)Z }
1_Z(T_K —, (3.23
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FIG. 5. The zero-bias conductance peak heigh(T,V=0, FIG. 6. The exactg function in units of 8o=B(V,T=0)
K=1/2) is plotted as a function of temperature. =1I'/2 is shown as a function &V/Ty andT/Tk . There is a cross-

over between th§ —0,V+#0 limit, where 3— —1/2I", and theV

where the decrease of the peak height at finite temperature ig0.T#0 limit, where 3—0 nearT~V: as the temperature is in-
evident. creased pas¥, the g8 function approaches zero where the coupling

Although it is possible to calculate the differential con- Stops to run. This crossover explains the low height of the peak,
ductance at zero bias for more general values of the Luttinge¥hich eventually disappears asis increased well beyond 1, lead-
parameterK, it involves solving a set of complex coupled N9 to @ smallefT.
integral equations. This has been done numerically for the
related problem of tunneling into a Luttinger liquid in the creases rapidly a becomes smaller thag*, giving rise to
work of Koutouza, Siano, and Saléfiwho find that the a pronounced ZBC peak asis increased pass* > v, This
results vary quite smoothly as changes below 1/2The  explains why the experiment sees a rapid increase of the
main differences arise due to an analog of the “resonanceygc peak wherv is increased past* =1, even though we
found earlier by Fendley, Ludwig, and Saléﬁl_rTms reSO-  expectr,<1 due to the effects of the Coulomb interaction.
nance is responsible for the negative differential conductancg ;ihermore. since the behavior of tiefunction is quite
at Iargg voltages and at=0.) Th_us, at least at a qualitative jitferent for V=0 andT=0, we expect a crossover nedr
level, it seems that the behavior féf below 1/2 can be 1 \yhich was discussed earlier in relation to the existence
described by a curve like that of E(B.20, for some cross- ot 5 neak region with finite width and the low height of the

over scaleTy , but withK replacing the overall factor of 1/2. hoa1 i the region. These crossover effects and the behavior

Preliminary results indicate that this is also a quantitaivelyot the g function are shown in Fig. 6. This result illustrates
accurate description of the d&fa.

X ) our general statement that it is the competition between the
With the full expression for the conductance, £8.20,  temperature and bias voltage that enables us to observe the

we can calculate thg function, Eq.(3.18), to obtain conductance peak, and the height of the peak can be much
" v e lower than the saturation valuée?/h since the observable
BV T)=—=T e m §°(2) height will be limited by the temperature. This result also

Y 2 ) Tk @) ' supports our argument that competition betwdeand Ty

Rey"(2)+ —Reyt™(2) eventually leads to the disappearance of the peak as the fill-

(3.24 ing factor is raised further past a valwe-1.

B ) ) In this section, we gave a detailed analysis of the experi-
wherez=1/2+Ty/mT+ieVI2aT andy "(2) stands for the  enia| predictions of our model, which was developed in the

nth plerivgtive of the digamma function. This result is ShOW”previous section. After mapping the problem to the BSG
in Fig. 6 in the form of the plot oB(V,T)/|B(V.T=0)| asa  model, by borrowing known exact results of the BSG prob-
funct|on_of T/T_K andeV/Ty . From the above expression, |em and calculating the relevag function, we suggested
we can immediately read off that consistent explanations to the so-far-not understood peculiar
. _ features of the experiment by Kang and co-workers. In our
\ll'TOB(F’V’T#O)_O’ (329 picture, finite-temperature effects are responsible for the ob-
servability of a ZBC peak with an unexpectedly low value of
which means that the coupling stops runninyat0 at finite  its height, as well as to the finite width in filling factors
temperature. Comparing E.25 to Eq.(3.19 which gives  where the peak is observed.
B(I',V, T=0)=—T'/2 for the case of consideratidh=1/2, Our picture is a natural consistent scenario for the appear-
we can see that the limiff—0 andV—0 do not commute. ance of the ZBC peak in the wide range of filling factor near
Hence, we conclude that there is a singularityTatV=0, v~1. In the next section we will show that the reappearance
simply illustrating the fact that the coupling runs indefinitely of the ZBC peak in the range of filling factor near-2 in
only at zero temperature due to the underlying quantunprinciple can also be understood by following closely the
phase transition & =1. This implies that all we should be approach of this section for the~1 case but now consid-
able to see at any finite temperature is a crossover ffom ering the possibility of a partially spin-polarized state near
>Tk to T<T¢ nearK~K* <1 at which the tunneling in- v~2.
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IV. TUNNELING CONDUCTANCE NEAR erator J3 =3y ,0%4. g, Where o® are Pauli matrices,
AND ABOVE v=2 with a=x,y,z. The Hamiltonian density for the system of
two coupled edges can be written as a sum of charge and

To understand the peak in the-2 region, we first note spin Hamiltonians,

that this peak region begins abruptly near2 in an appar-
ently similar manner as it does near-1.'% In the bulk Ho=H.+Hs. 4.1
system, as the filling factor becomes comparable to2, L

the electron spin begins to matter, as the spin-reversed stat&8€ charge Hamiltonian is given by

begin to get progressively occupied. Thus, even if the 2DEG

is fully polarized forv~1, spin plays a crucial role for He=
~2. In addition, for samples with high nominal electronic

density, spin fluctuations are known to become important anevhere both the bare edge velocity and the effects of the
in some cases so much that the ground state may even bdrdraedge interactions are absorbed in the effective charge
spin singlet. However, this situation requires samples withvelocity v.. We will write the spin part of the Hamiltonian
fairly high densities, which is presumably not the case in theas a sum of two terms,

experiment of Kang and co-workers. Hence, a natural exten-

sion of the picture that we advocated for in the previous Hs=Hsymmt Hperts 4.3
section, as it stands applicable only for fully polarized,,are the S(®)-invariant part has the forff

2DEG'’s, simply requires us to take into account the changes

in the physics brought about by the electron spin and, in 27 . . .. .

particular, of the role played by both Zeeman and exchange Hsymm=?vs(J+~J++Jf'J7+695\J+'~L)- (4.9
interactions. This extension should be applicable to both

spin-singlet and -nonsinglet cases. However, once the spiHere v includes the effects of intraedge spin interactions
degrees of freedom is included, there is a richer class oindg; is the interedge strength of the exchange interaction.
possible behaviors, for there are now three possible types of We have used a simple and rather crude model to estimate
tunneling corresponding to tunneling of charge and/or spinhe interedge exchange coupling constant. We modeled the
degree of freedom. In what follows we will be interested barrier with a potential/(x) of heightV, and width 2a. We
mostly in the regime in which the spin polarization is not find that, as expected, due to the antisymmetry of the wave
large. Hence, we will assume a reference state in which th@inction, the dimensionless coupling constgghas a ferro-

up- and down-spin branches have the same filling fagtor magnetic sign and that its magnitude has a rapid dependence
=», and investigate the effects of the Zeeman term whiclof k.~ wherekg is the Fermi wave vector of the edge states.
will tend to polarize the state. We will focus on states with For a barrier of width 88 A and height 220 meV, and for a
total filling factor v=1. For these states the outermost edgemodel in which correleations enter only in the antisymmetry
is av=1 edge(per spin componehtEffects of the magnetic of the wave function, we estimate that reasonable values of
field thus enter in the choice of the range of filling facior the dimensionless interedge exchange coupling constant are
=2, in the presence of spin exchange interactions, and iquite small, typically in the rang@s|~ 10 3-10 4. While it
effects of the Zeeman term as well as other possibl€2BU is quite possible that we are underestimating the magnitude
symmetry breaking terms on the edge states. We will conef g, it seems unlikely that a realistic value can be larger by
sider two different physical situation$l) when the SW2)  more than an order of magnitude. In addition, we show be-
symmetry of the spin is broken either by(large Zeeman low that for the ferromagnetic sign, interedge exchange in-
term, in which case the ground state may be polariz¢éd teractions arémarginally irrelevant. Hence it is reasonable
though not necessarily fully polarizgdor by magnetic an- to setgs to zero if gs<0, since the expectedogarithmio
isotropy terms(expected to be very small in these systgms corrections to scaling will be exceedingly small.

and (2) when the Zeeman term is small enough that the The Hamiltonian for the symmetry breaking perturba-
ground state is a singlet at=2. There are a number of other tions, i.e., a Zeeman term and an anisotropy term, is
interesting cases, such as the singlet and partially polarized

states av<<2, which will not be discussed here. These states Hper= — upgB(J% +32) +4mv g\ J5 32, (4.5

have interesting tunneling propertiédut do not exhibit the
ZBC peak in the tunneling conductance that we are discus
ing here.

amv
2C(J°+Ji+J°_J°_+290J°+J°_), (4.2

g/yhere,uB is the Bohr magnetorg is the gyromagnetic ratio,
and A measures the strength of the magnetic anisotropy

The Hamiltonian density that was studied in the previous(WhICh is quiet likely to be very smgll In the_ Sa*_“p'e_s of
section can be easily modified to account for the spin degre@nd @nd co-workejs ForA>0 the anisotropy is Ising like
of freedom and its interactions. Thus, we write the Hamil-2nd forA <0 itis XY like. For notational convenience, we
tonian density in terms of the spin-dependent chiral electrof€fine theXY component exchange couplig and Ising
densitiesJ. ,= ¢! 4. ,, with spin projectiona=1,]. exchange coupling:

Furthermore, the spin-spin exchange interaction and Zeeman _ _
term should now bg inclﬂded in thegHamiItonian density. Let 9,0, 9=(1+M)gs. 4.6

us define the charge densities operators of chiral modes &xperimentally it is known that in GaAs the gyromagnetic
J$=J. ;+J. | and the three-component spin densities opfactor is anisotropic and that this anisotropy is quite large for
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the geometry of the experiment of Kang and co-workérs. The coefficienty2 in front of the charge current shows that
The magnitudéand sign of the magnetic anisotropanisot-  the filling factor is¥=2. In what follows, exactly as what
ropy in the exchange interactipare apparently not known. we found for fully polarized states, changes in the filling
As we will see below the magnetic anisotropy can potentiallyfactor will only appear through the dependence:oof the
lead to interesting effects such as a possible spin-gap stateoupling constants. However, the coefficient of the current
However, given the smallness of our estimate of the exwill remain unchanged.
change interaction we should expect the spin gap to be small The corresponding expressions for the chiral spin currents
as well. Nevertheless, in spite of the possible small value Oﬂa:, a=x,y,z, the three generators of theu(2); Kac-
this gap, we will discuss the interesting physics of this stateMoody algebra of spin, are

We will treat the spin-1/2 case using Abelian bosoniza-
tion, much in the way we did the spin-polarized case in the 1
previous section. However, we will pay special attention to Jx,i=ECOS( \/§¢s,i),
the role of the SI(R) spin symmetry which is not manifest in
Abelian bosonization. In any event we will also be interested 1
in situations in which the S(2) symmetry is explicitly bro- Jy = =—sin(\2¢s .), (4.13
ken (say, by the Zeeman tepmand in that case Abelian ye 2m o
bosonization is the most direct way to solve this problem.
Hence we proceed to use the standard Abelian bosonization 1 1
approach in a similar manner as in Sec. Il except that now Jy o= E—&xcﬁs,i .
the chiral Fermi fields are spin dependent. V2

_The right- and .Ieft—movmg.chwal Fermi fields with spin The factors ofy2 are crucial for the system to be invariant
a=1,] are bosonized according to the Mandelstam formulaUnder the S(2) symmetry of spir®

1 In the absence of electron tunneling at the point contact,
lﬂi = etidrl) (4.7) the Hamiltonian for the line junction reduces fg="H,
2w +Hg of Eq. (4.2) and Eq.(4.3), respectively. Thus we re-

) ) ) . cover the familiar spin-charge separation of one-dimensional
whered.. , are spin-dependent chiral right- and left-moving jnteracting electronic systems. This Hamiltonian has been

Bose fields, respectively. The corresponding bosonizedydied extensively in the literatursee, for instance, the
normal-ordered density operators are pedagogical discussion in Ref.)36The charge sectok,
behaves exactly as in the spin-polarized case of Sec. Il. The
(4.8  only difference here is the factor af2 in the definition of
the (bosonizedl chiral charge currents which reflect the fact
that these are the edge states of two quantum Hall states each
with filling factor »=2. Thus the discussion of Sec. Il im-
plies that the charge sector is described by a rescaled charge

bosone.= (¢ + + be, )/ VK, with Lagrangian

‘]i,a: - Z&qui,a'

Extending the expression in EQ.5) to the partially spin-
polarized case of concern, the Lagrangians for each spi
component of the decoupled noninteracting edges are

1
Ei,a[d’i,a]: Eaxqst,a(iat_voax)gbi,a . (49) 1 1 2 2
£c:§ v_(at(Pc) —vc(dxpe) |, (4.14
The chiral boson fieldg.. , can be decomposed into their ¢
spin and charge components: with a charge Luttinger paramet&r, equal to
bom (e + e )y oo =) K=\ .15
*.,c \/E *1 =,/ *+.,s \/E =7 =,/ c— 1+gc- .
(4.10

) ) ~ Note thatK <1 sinceg.>0. The compactification radius of
In terms of these chiral charge and spin bosons, the right,e charge bosorp. is R.=2/K,. The velocity of the

moving electron operators afap to Klein factors charge boson is renormalized exactly as in the spin-polarized
case, i.e.vczvm/l—gcz.

1111 / ,_vLe(i/\fi)dic’_,_et(i/\@)(ﬁsﬁ_; (4.1 Naturally, the main difference between the case with a

NG small spin polarization and the fully polarized case resides in

. o . _ the spin sector with effective Hamiltonidts. The first two
i.e., the electron splits into a spin-1/2 charge-neutral spinORerms of the SIR)-symmetric part of spin Hamiltonian of

and a charge-1 spin-0 holon. Eq. (4.4 represent two decoupled edges with exac(BU
The chiral charge currentk, .. are symmetry. In fact, this is a fixed-point Hamiltonian of two
chiral su(2),; Wess-Zumino-Witten conformal field theories.
3 :_E& b 4.12 Except for the renormalization of the velocities, due to
€ 2 XTeE ' forward-scattering intraedge interactions, this is a free
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theory. In Abelian bosonization the first two terms of the 81
Hamiltonian of Eq(4.4), which we will denote byH; .. , are
given by®

27 . v

Hee=g vl =g (oxps )’ (416
The interedge exchange interaction term, with coupling con-
stantgs, is a chirality breaking perturbation and its effects
are well knowre® After Abelian bosonization, the Ising com-
ponent exchange interaction only renormalizes the velocity
and the compactification radius of the spin boson butXie
component exchange introduces a cosine term as can be se

in the bosonized effective Lagrangian g|
1/1 vsg i i i
N el 2_ 1 2| _ YsYL o FIG. 7. The RG flow of Eq(4.20. The trajectories starting at
Ls=8n vl (0eps)”~v5(dxps) o C0dV2Kses) points in the shaded region flow to the spin-gap phase.
S
usgB K anisotropic look of Eq(4.17), the relation betweeK and
- = s, 4.1 g, , which is same ag) in this case, guarantees that the
. 2 Ix¥s [

allowed RG flows are S(2) invariant.
whereg, andgj are defined in Eq(4.6) and the last term is From Eq.(4.20, the RGg function forgs is
the Zeeman term. In Ed4.17), ¢ is the rescaled spin bo- dg

S

son, B(gs) = =292-2g3+---. (4.2

dina
05= (s, + s ) VKs, (4.18 For g,<0, i.e.,ferromagneticexchange coupling, the co-
with the Luttinger parametekg, the renormalized velocity sine term is amarginally irrelevantperturbation. Hence in
ve, and the compactification radius of the spin boson giverthe low-energy regime the effective coupling vanishgs,
by —0, albeit very slowly, giving rise to logarithmic correc-
tions to scaling. Thus, fogs<O the spin\/s_ector of the line
l1-g, junction remains gapless akd— 1, Rs— /2, a result origi-
Ks= 1tg vi=vsV1-gf, Re=V2/K, (4.19 nally found by Luther and Emetyin the theory of the one-
dimensional electron gas. This is presumably the relevant
case for the line junction in the $B)-symmetric regime
since the interedge exchange interaction is naturally ferro-
Let us discuss first the case when the Zeeman energy imagnetic. However, we will see below that magnetic anisot-
very small. Although this case does not apply to the samplegopy can make the antiferromagnetic regime accessible.
used in the experiments of Ref. 12, in which the Zeeman In contrast, forgs,>0, i.e., antiferromagneticexchange
interaction is not small, nevertheless it is a good startingcoupling, this perturbation isnarginally relevantand the
point for a theoretical analysis of this problem. The renor-flow is asymptotically free. In this case the effective coupling
malization grouRG) B functions for the exchange interac- constantg, flows to large values where scale invariance is
tion coupling constants are well known to have theviolated. Hence, in this case the system flows to a phase with
form>24:39:40 an energy gap in the spin sectorspin-gap statealong the
SU(2)-invariant RG trajectory. This state is physically

A. Small Zeeman term

dg, o 01— 5 + equivalent to the Haldane ph&8ef one-dimensional quan-

dina_ <9929 tum Heisenberg antiferromagnets and to the Luther-Emery
(4.20 liquid of the one-dimensional electron dftdn particular, for

dg ) ) Ks=1/2, the spin bosory is equivalent to a massive fer-

dina_29i+4gigp+ -, mion. This is the well-known Luther-Emery point.

For small values of the coupling constam the magni-
wherea is a length scale. The resulting RG flow is sketchedtuyde of the spin gap\ can be determined by perturbative
in Fig. 7. The consequence of the flow depends on the anenormalization group methods. For a strictly (84
isotropy of the interaction and the sign of the coupling as thénvariant system the spin gap is the well-known result

following.
Ay(gs) =D gee M/, (4.22

whereD is an ultraviolet cutoff of the order of a fraction of
This model describes twa=2 singlet quantum Hall the Fermi energy(The factor of\/gs is due to corrections to

states coupled along a line junction. In this case we cascaling which appear at two-loop order d3.) Given the

define a single coupling constagy=g, =g, . In spite of the  apparent smallness of the exchange coupling congiant

1. SU(2)-symmetric case
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this result is probably good enough here. For larger values of 2
gs the spin gap can be determined either from the full Bethe- A(PSEJ dXdyps—Apst
anstaz solutions of the sine-Gordon and chiral Gross-Neveu

models or at special points, such as the Luther-Emery pointvherelL is the length of the systeifthe barrief. Sinced, ¢,
from bosonization arguments. In both cases in addition to thés proportional to the spin density, the twist of BC's, Eq.
spin gap one finds a spectrum of solitons which should lead4.24), implies that thez component of the spin polarization,

mYy
Us

L, (4.24)

to interesting resonance effects in tunneling. M,=(S,), is finite, Mg y/vs=BL, and this state has a non-
zero spin polarization, although in general is not fully polar-
2. Effects of a small magnetic anisotropy ized.

Let us now discuss what happens if there is a small mag; Hence, the only observable effect of the Zeeman term in
netic anisotropy, i.e., a small anisotropy in the exchange in—he gapless phase is a nonzero spin polarization and hence a

teraction. Presumably for the samples used in the experfy\”it ?f the bO‘jj’.‘daW Ct?]nd't'f?nst' f the 7 ¢ in th
ments of Kang and co-worket$jf there is any anisotropy at -€t us now discuss the eflects of the zeeman term in the
all, it is exceedingly small. However, we will discuss this spin-gap phase. An examination of the effectlye Lagran_g_lan
case here since it leads to interesting effects. Magnetic aréS of Eq. (4.17) shows that, as expecteq, there is compt_atltlon
isotropy makes the Ising exchange coupliggdiffer from etween the Zeeman term and the cosine operator. This com-
the XY exchangeg, . In this case the RG flow no longer petition, which bears a close analogy with the mechanism of
follows the SU2)-invariant trajectory. It is easy to see from the commensurate-incommensurate transition, leads to dif
the B functions, Eq.(4.20, that for ;>0 (in which case ferent physical behaviors depending on which is the smallest
H . . ) S .
both g andg, are positive, the line junction will flow to-  S1erdy scale, the zeeman energy ot th.ehs‘;]'” gap. When rt]he
ward the spin-gap state. Zeeman energy is small compared with the spin gap, the
However, forg.<0, the RG flows depend on the anisot- system will stay in the gapped phase despite the twist of
’ s 7 BC’s. However, when the Zeeman term dominates, the co-

':?apg.c:/grlfgsl?Ilg\?v_ltlg\?ve?rglstﬁgcl)i?l?(o? gie?jndcgiisoé\ttggrsgne-Sine operator once again becomes irrelevant and the spin gap
) P is destroyed by the Zeeman interaction.

Gordon coupling constant an&>1. Conversely with
XY-like anisotropy § <0) we get the opposite result. In this
case, the RG trajectories still flow initially toward the free
theory @, —0). However, they will eventually be drivento  The discussions in the previous two subsections can be
the marginally relevant flow of the SP) trajectory, leaving summarized as the following. Depending on the sign of the
the su(2), fixed point. Hence, in this regime the line junc- exchange interactions, magnetic anisotropy, and the strength
tion flows toward the spin-gap state. Thus, even though thef the Zeeman term, the spin sector of the system can be
initial value of the interedge interaction is negatige<O, either in a spin-gap phase or a gapless phase. Let us finally
an arbitrarily smallXY anisotropy drives the line junction look at the consequences of these results for the question of
necessarily to a spin-gap state. This is a remarkable effe@lectron tunneling transport in the line junction. Due to the
which leads us to conclude that there is a phase transition apin degree of freedom, there are now three possible types of
A=0. The discussion above is summarized in Fig. 7 whergunneling corresponding to the tunneling of charge and/or
the region in the coupling constant space which flows to thespin degree of freedom. The lowest-order operators for each
spin-gap phase is shaded. of these processes are the single-electron tunneling operator
which transports both charge and spin,

C. Tunneling transport

B. Effect of Zeeman interactions

Let us finally discuss the case of large Zeeman interac-

tions. Physically this is the most important case. It is also the occo{ /?C(PC , 4.25

Oc=] s+ 9] . _+H.c.
\/K

simplest. The charge sector is not affected by the Zeeman co 2 s

interaction, and it behaves exactly in the same way as in the o o )

previous cases. The effect of the Zeeman term on the spit€ Spin-singlet paitspin-0, charge-Rtunneling operator

sector depends on which regime the line junction is in. In the vt

absence of a spin gap, which as we saw above happens for  Opair=¥1 +¥| + ¥, -7, +H.c.ccosy2Kceo),

0s<0 in the SU2)-symmetric case or with Ising-like mag- (4.26

netic anisotropy, the cosine term is irrelevant. In this caseang the tunneling operator of a spin-1 charge-neutral excita-

the Zeeman term can be eliminated from the Lagrangian denjgp:

sity by a shift of the spin fieldps— ¢+ 27 yx/vg, where

Os=4 ¢ 9] iy +H.cocco8 V2K o).

o #B9B /Ks 4.23 (4.27)
Lo 2 ' The single-electron tunneling operatOy, clearly mixes the
charge and spin sectors. As far as the charge sector is con-
While this shift has no effect on the charge sector it forces aerned, this tunneling operator is similar to the one for fully
twist in the boundary conditions of the spin sector: polarized electrons shown in E(R.10, except that instead
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of the Luttinger parametef we now haveK., whereK. is

the charge Luttinger parameter defined in E4.15. The
spin sector has a similar structure with the effective Luttinger
parameteK. The scaling dimension of the operator of Eq.
(4.25 at a point contact is

de:%(Kch Ky). (4.28

The singlet pair tunneling operatél,,;, which depends only
on the charge boson and the holon pair tunneling ope€afor
which depends only on the spin boson are higher-order op-
erators. At a point contac),,,; andOs have boundary scal-

ing dimensiondd,,,;; andds, respectively, given by FIG_. 8. The phase diagram near 2. The pe_ak in both the spi_n
tunneling conductance and the charge tunneling conductance is ex-
dpair=2Ke, dg=2Ks. (4.29 pected in the crosshatched region below the Kpe-K=2 where

the single-particle tunneling operator is relevant. On the other hand,

. . the charge-only tunneling operat6é¥, and the spin-only tunneling
Now let us discuss the possible effect of these operators ifyeratore, , respectively, are relevant in the dark shaded region to

the spin-gap phase and the gapless phase. First, because {{i¢eft of the dashed line and lightly shaded region below dotted
singlet pair tunneling operata®,,;, depends only on the |ine.

charge boson, its effect is the same for the spin-gap phase

and the gapless phase. Since the charge sector is free, the 2. Gapless phase
constraint of momentum conservation forbids singlet pair In th | has® 0. al I d onlv at
tunneling in the absence of a point contact. However, the 'n the gap esz p hash’e or s ?‘T‘}o are aflowed only al a
operatorQ,,;, at a point contact is relevant fa¢,<1/2 in point ::cantact 3” W tit eLr a:py ofthese opfrato$hare ]Ere e,;’ arf\t
the presence of a strong Coulomb interactj@y. (4.29] or not depends on the -utlinger parameters. 1he etiect o

and it can lead to charge-only tunneling for both the spin-ga[?hree tunneling operatoe, Opair, aNdOs at a point con-

= dact in the gapless phase is summarized in Fig. 8 as pointed
phase and gapless phases. On the other hand, the pOSS|b|I|t051u§[ earlier by Kane and Fish®The crosshatched region is

of the other two tunneling processes—namely, the single- h the sinal ficle t i ©r i | ¢
electron tunneling and the holon-pair tunneling—depend of/Nere the singlie-particie tunneling operatg IS relevan

the presence or absence of the spin gap since their opera 'Pd we expect the peak in both the spin tunneling conduc-

representation involves vertex operators of spin bosons. ~ ac€ and .the charge tunneling conduptance. In the dark
P P P shaded region to the left of the dashed line, the charge-only

tunneling operatoO,,;, is relevant. Analogously, the spin-
only tunneling operato@y is relevant in the lightly shaded

In the gapped phase, the spin boson figldacquires an  region below the dotted line. Note that one has to keep in
expectation value in the seb,=2n7/\2K, wherene?Z  mind thatk,<1 because of the Coulomb interaction.
which labels the manifold of degenerate ground states in the For the SUW2)-symmetric gapless casgvith ferromag-
gapped phase. Since the value of g86{/2¢) alternates in  netic exchangein which K,=1, the (boundary scaling di-
this set, the expectation value 6%, vanishes in this phase mension of the electron tunneling operator IS ¢1)/2
and the single-electron tunneling i®xponentially sup- <1, sinceK.<1. Thus, the single-electron tunneling term is
pressed in this regimgThis is a natural result since the a relevant perturbation, and the coupling constafiows to
electron carries spin 1/pTherefore, the lowest-order tunnel- strong coupling in this case. Therefore, there should also be a
ing process that can contribute to a charge transport acrogero-bias peak in the tunneling conductance in the case of a
the barrier is the singlet-pair tunneling, which is possibler=2 spin-singlet quantum Hall state, with qualitatively
only through a point contact for both the spin-gap phase andimilar properties as the zero-bias tunneling peak for the
gapless phase. Although this is a two-particle proc€ssg;, spin-polarized case. With ferromagnetic exchange interac-
can still lead to a ZBC peak even in this spin-gap phase if théions and Ising-like anisotropy, in which case the system is in
Coulomb interaction is strong enough so thka<1/2 which  the gapless phase independent of the strength of the Zeeman
makes this operator relevant as we mentioned earlier. Howterm, Ks>1, and Fig. 8 implies that holon-pair tunneling is
ever, since) is relevant and allowed everywhere along thealways irrelevant in this case. However, KK <2—K, for
barrier in the spin-gap phas€ is the operator that causes weak ferromagnetic interactions, the single-electron tunnel-
the spin gap there is a perfect spin tunneling in the absenceng is relevant. Also with a strong enough Coulomb interac-
of charge tunneling even in the absence of a point contaction, singlet-pair tunneling can become relevant. Finally, for
The mechanism behind this effect in the spin sector is similaa phase in which the gap is washed out due to a strong
in spirit to the explanation of the ZBC peak in tkharge  Zeeman termK <1, and again the single-electron tunneling
tunneling conductance proposed by Mitra and Gitinn is relevant.
fact this phase looks very much like a superconductor with- To summarize, in both the spin-gap phase and gapless
out phase coherené. phase, there is no charge tunneling current in the absence of

1. Spin-gap phase
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a point contact. In the gapless phase, there underlies a quatieep into the strong-coupling regime fior- 1, leading to the
tum phase transition in the single-electron tunneling procesappearance of a zero-bias peak in the tunneling conductance
through a point contact which leads to the reappearance afith a peak value al =0 of G,=Ke?/h, with K<1. We
the zero-bias peak near-2 in a manner similar to the fully mapped the problem onto integrable boundary sine-Gordon
polarized case of the previous section. On the other handheory and used the known exact results of the BSG problem
even though the single-electron tunneling is exponentiallyto obtain predictions for the behavior of the tunneling con-
suppressed in the spin-gap phase, an analogous crossoverdiictance. By considering a special solvable case, we deter-
the singlet-pair tunneling channel can lead to the reappeamined the behavior of the conductance for all temperature
ance of the ZBC peakin the regime of strong Coulomb and voltages. We investigated several crossovers of interest
interactiong. This scenario is consistent with the experimen-py introducing an appropriatgd function. This analysis
tal observation which displays a very close similarity be-showed that the crossover between fe0 behavior and
tween the manner in which the peak region appears abruptihe V=0 behavior yields a natural explanation of the low
and disappears gradually in both-1 andv~2. Since the value of the “zero-bias conductance peak” measured in the
operatorO, mixes the spin and charge sectors, in the regimexperiment-? We also showed that the gradual disappearance
in which this operator is relevant it induces a nonzero tunof the peak as the filling factor is increased pastl can be
neling current of both charge and spin. Hence, if the ob-ascribed to the crossover betweBa T, and T>Ty .
served ZBC peak near~2 is indeed caused by the single-  Furthermore, we considered the role of spin in this tunnel
particle tunneling operator in the phase without a spin gapjunction and showed that the reappearance of the ZBC peak
we expect that apin conductancpeak should be observable in the region near the filling factar~2 can be understood if
nearv~2 but not near~1, in marked contrast to charge we assume that there is(possibly sma)l spin polarization
conductance which would show a ZBC peak near both fillingnear»~2. We extended the approach we used for fully po-
factors. larized electrons withv~1 to partially spin-polarized and

In this section, we extended the picture we advocated inpolarized electrons with~2, by taking into account the
the previous sections to the case of small spin polarizatiofgle of Zeeman interactions, exchange interactions, and mag-
nearv~2 and investigated the changes in physics broughhetic anisotropies. We discussed in detail the phase diagram
about by the electron spin. It was pointed out that the interof the system in this case and showed that the tunneling
play between the Zeeman term and the exchange term eBignature depends on whether the spin sector is gapped or
ables us to identify two different phases in terms of their Spil"hot_ We showed that the picture near 1 can be natura”y
transport properties even in the absence of any point-contagiktended to this new regime and that the single-particle tun-
operator: a spin-gap phase in which the spin excitationgeling operator can also give rise to a zero-bias tunneling
along the edge are gapped, and hence perfect spin tunnelingbnductance peak in both charge transport and spin transport
and a phase with gapless spin excitations. In both casef the gapless phase. Higher-ordénultiparticle point-
there is no charge tunneling current in the absence of a poirfontact operators can in principle lead to charge-only or
contact. Since in most cases of phySiC3.| interest the ed%in-omy tunne"ng' depending on the value of Luttinger pa-
states are likely to be in the gapless phase at least for a larggmetersk, andK. On the other hand, we found that spin
enough Zeeman interaction, we proposed that here too the[%nsport a|0ng the edge is gapped even in the absence of a
is a crossover in single-electron tunneling processes througboint contact when the Zeeman term is small and if there is
a point contact, leading to the reappearance of the zero-biggvery weakx Y-like magnetic anisotropy or if the exchange
peak nearr~2. In our picture, the apparent similarities in interaction is antiferromagnetic. In this regime we expect
the patterns in which the peak region begins and disappeaperfect tunneling of the spin current, which suggests future
near two filling factorsv~1 andv~2 in the experiment by  experimental tests of these ideas. Even though the single-
Kang and co-workers can be understood in a natural anglectron tunneling is exponentially suppressed in the spin-
consistent way. The reappearance of the peak regionineargap phase, the singlet-pair tunneling can lead to a ZBC peak
~2 had been totally unexplained in previous theories of tunin the presence of a strong Coulomb interaction.
neling between laterally coupled FQH staté$® We also Our scenario is based on the assumption of a single tun-
discussed a number of interesting two-particle tunneling proneling center. When the bias voltage and the coupling be-
cesses and the interesting behavior of spin tunneling in thesgeen edge modes on each side of the barrier are weak
systems. enough to give a low peak in the tunneling conductance, as is
observed in the experiment, the scenario of tunneling
through a single tunneling center is quite likely to be an
accurate description of the physics. Even though our picture

In summary, in this paper we proposed a theoretical exis applicable only neafand abovgr=1 andv=2, it offers
planation of the questions raised by experiments of Kang and natural explanation of many salient features of the experi-
co-workerst? by modeling the system as a pair of coupledment which were not explained so far. This picture offers a
chiral Luttinger liquids with a point contact. Using standard consistent explanation for the reappearance of the ZBC peak
bosonization methods we mapped the problem to the tunne&nd of the observed similarity in the manner in which the
ing problem in Luttinger liquids first discussed by Kane andtwo peak regions near~1 andv~2 appear and disappear.
Fisher*® Our results show that the interedge Coulomb inter-Our results also indicate that temperature should play an im-
action reduces the Luttinger parameter and moves the systeportant role and that a temperature dependence of the data is

V. CONCLUSIONS
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needed to understand what is going on. In particular we pre- We finally note that there is a recent paper by Carpentier,
dict that as the temperature is lowered the crossover fillingPeca, and Balerfts on a related problem. Carpentier and
factor v* will be lowered and that the width of the peak co-workers calculated the tunneling current between interact-
region (in the filling facton as well as the height of the the ing Luttinger liquids constructed in a similar geometry as the
ZBC peak will increase. We also anticipate a region with thegeometry of the experiment by Kang and co-workers. They
ZBC peak in spin conductance near-2 but not nearr  showed that electron fractionalization can be probed from
~1. We find that there is more than one mechanism throughnultiple branch points of the current density. However, both
which spin tunneling can happen, and depending on thenhe effect of chargingleaking from (to) the bulk system and
channel, the spin tunneling may or may not be accompanieghe absence of a chirality constraint make the system consid-
by charge tunneling. ered in the Ref. 45 quite different from the system consid-

Although in this paper we considered only the simplestered in this paper in connection with the experiment by Kang
possible case of a single tunneling center, it is interesting t@nd co-workers.

investigate the effects of more than one impurity. While we

have not investigated this problem extensively, it is clear that
there should be interesting interference effects if there is
more than one tunneling center. Indeed, some time ago Cha-
mon and co-workef4 proposed an experiment based on a We thank Professor W. Kang for several useful and stimu-
two-tunneling-center device in the fractional quantum Halllating discussions. This work was supported in part by the
regime as a way to measure the fractional statistics of LaughNational Science Foundation through the Grant Nos.
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