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There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled
to either bosons or fermions within the condensed matter community, particularly in the context of topological
insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-
standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are
the anomalously large value of the correlation length exponent ν ≈ 2.3 and that ν is observed to be superuniversal,
i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997)]. Duality
motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field
with U(Nc) gauge group coupled to Nf = 1 fermion. We study one class of theories in a controlled limit where
Nf � Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not
yield an anomalously large exponent ν within the large Nf � Nc expansion, they do offer a new parameter space
of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and
Wu, Phys. Rev. Lett. 70, 1501 (1993); Chen et al., Phys. Rev. B 48, 13749 (1993)].
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I. INTRODUCTION

Phase transitions between different quantum Hall states
have long been viewed as poster-child examples of quantum
critical phenomena [1]. The longitudinal resistivity ρxx , the
width �B of the transition region, and (dρxy/dB)max exhibit
scaling collapse in the vicinity of the transition over almost two
decades of temperature [2–7], frequency [8], and current [9].
Furthermore, although each plateau is believed to represent a
distinct topologically ordered phase with (generally) different
sets of fractionalized excitations, interplateaux transitions
appear to possess the same values for the correlation length
exponent ν ≈ 2.3 and dynamical critical exponent z ≈ 1:
distinct critical points exhibit “superuniversality” [1,10–12].
The anomalously large value of ν ≈ 2.3 and the apparent
superuniversality remain a major mystery from the theoretical
standpoint, as an accurate description clearly involves strong
interactions as well as some form of translational symmetry
breaking, such as disorder. This problem has been studied from
a field-theoretic perspective using a theory of flux-attached
bosons [10]. However, it has been difficult to make progress
due to the fact that the quantum field theory of interest (matter
coupled to an Abelian Chern-Simons gauge field) is strongly
coupled [10,13–18]. Controlled approximations to this theory
yield correlation length exponents that strongly depend on the
particular quantum Hall transition [19,20].

Duality provides a powerful perspective for studying
strongly coupled quantum field theories that has been used
in the past with great success [21–27]. There are two senses
in which different theories are said to be dual. The first is

as an exact equivalence of theories. A familiar example is
bosonization in 1 + 1 dimensions where a self-interacting
Dirac fermion can be equivalently described by the theory of
a free boson [21–23]. The second type of duality is as an IR
equivalence: two theories are IR dual if they belong to the same
universality class. In this paper, we use duality in this second
sense. A famous example is particle-vortex duality in 2 + 1
dimensions [28–30]. This duality identifies the IR content of
the XY model to that of a lattice superconductor coupled to a
U(1) gauge field, i.e., the Abelian-Higgs model. Historically,
particle-vortex duality was used as a means to understand
the Abelian-Higgs model, as applied to superconductivity; the
XY model was relatively well understood, so duality allowed
one to predict the existence of a continuous phase transition
as well as its critical behavior. Similarly, level-rank dualities
were discovered, and in fact proven, for pure Chern-Simons
theories [31,32]. As its name implies, these dualities swap
the Chern-Simons level and the rank of the gauge group (in
Yang-Mills regularization) up to U(1) factors [33].

Recently, generalizations of level-rank duality have been
proposed [33–37]. The conjectured duals relate theories of
Chern-Simons gauge fields coupled to either fermionic or
bosonic matter fields and may, in some cases, be thought of
as bosonization in 2 + 1 dimensions. These dualities have
been of particular interest to the condensed matter community
[38–41] in explaining [42–44] the T-Pfaffian surface state of a
topological insulator as well as providing a new effective de-
scription [45] for the half-filled Landau level that is manifestly
particle-hole symmetric [46–50], thereby “symmetrizing” the
seminal work by Halperin, Lee, and Read [18]. We suggest
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that these new dualities could also be useful in understanding
phase transitions between fractional quantum Hall states, as
they involve theories that generalize prior effective descriptions
consisting of Abelian Chern-Simons gauge fields coupled to
matter [10,19,20].

To this end, we expand in this paper upon previous efforts
to understand fractional quantum Hall transitions in field
theoretic models without disorder. In contrast to prior works
[19,20], the class of theories we study consists of a Chern-
Simons gauge field with non-Abelian U(Nc) gauge group for
Nc > 1 coupled to Nf Dirac fermions. When Nf = 1, this
model is dual to the theory of a fractional quantum Hall
transition first studied by Wen and Wu [19] and may be
viewed as a generalization of the theory studied by Chen,
Fisher, and Wu [20]. Although our model is strongly coupled,
it can be reliably studied in various controlled limits. In this
paper, we consider the limit where Nf � Nc � 1. In this large
Nf � Nc limit, we compute the correlation length exponent
ν to leading nontrivial order. Although we do not find an
anomalously large ν within this expansion, effective theories
with non-Abelian gauge symmetry provide a larger parameter
space for exploration that could yield new insights.

The remainder of this paper is organized as follows. In
Sec. II, we write down our starting theory and discuss its
fermonic dual. In Sec. III, we discuss the calculation of the
correlation length exponent ν in the fermionic theory in the
large Nf � Nc expansion. In Sec. IV, we discuss our results.
Appendix contains details on the calculation of ν.

II. DUALITIES

Our starting point is the field theory studied by Wen and
Wu [19] that describes a fractional quantum Hall to insulator
transition on a lattice (without disorder) as a superfluid-Mott
transition of composite bosons, tuned by the (repulsive) onsite
lattice potential [51]; the phases are identified via their Hall
conductivities. When these bosons are at unit filling (appro-
priate to a fractional quantum Hall transition of electrons),
the latter transition has an emergent relativistic symmetry. As
shown in Ref. [19], such a model can be generalized to arbitrary
fractional quantum Hall to fractional quantum Hall transitions
by adding additional Abelian gauge fields; in this paper, we
choose to focus on the simplest case. The 2 + 1-dimensional
Lagrangian in Euclidean signature is

L = |(∂μ − ie∗Aμ − iaμ)φ|2 + m2|φ|2 + g|φ|4

− i

4πkB
εμνλaμ∂νaλ. (1)

In this theory, the fluctuating U(1) Chern-Simons gauge field
aμ with μ ∈ {1,2,3} attaches kB flux quanta to the complex
bosonic field φ. These flux-attached bosons are probed by the
external electromagnetic gauge field Aμ and carry charge e∗.
The coupling g is understood to take its IR fixed point value.
In Eq. (1), the transition is tuned by the renormalized mass
m2: in the m2 > 0 phase (where φ is gapped), the Hall con-
ductivity σxy = 0; in the m2 < 0 phase (where φ condenses),

σxy = − 1
kB

(e∗)2

h
; in both phases, σxx = 0 (σij refers to the

zero-temperature dc conductivity). For the fractional quan-
tum Hall-Mott insulator transition, we must choose kB ∈ Z.

FIG. 1. A schematic plot of parameter space for Chern-Simons
theories with bosonic and fermionic matter. Note that the orientation
of the y axis is inverted between the bosonic and fermionic cubes. The
double arrows indicate a duality between the connected points. The
pink points refer to free theories and the yellow points to “infinitely
coupled” theories. Previous works have studied the large color and
large flavor theories both in the fermionic and bosonic cases, labeled
in orange and blue [19,20,34,54,55]. The red dot corresponds to our
physical theory, while our calculation in the Nf � Nc expansion is
done in the green region. All calculations give ν = 1 at leading order
[19,20,34,54,55], while experiments give ν ≈ 2.3 [1].

For instance, to describe the 0 → 1/3 transition, one sets
e∗ = 1 and kB = 3. We are interested in the critical properties
of Eq. (1), so we set m2 = 0 for the remainder of this paper.

We would like to study a dual description of this fractional
quantum Hall to Mott insulator transition using a Chern-
Simons theory with U(Nc) gauge symmetry coupled to a
fermion. For this, we need to remedy the fact that the Chern-
Simons level (equal to −1/kB ) for aμ in Eq. (1) is not quantized
when kB ∈ Z is greater than one (see footnote1). Further, using
a generalized particle-vortex duality [52], we arrive at

L = |(∂μ − iâμ)φ̂|2 + g|φ̂|4

+ i

4π
εμνλ(kBâμ∂νâλ + Aμ∂νâλ). (2)

Note that φ̂ and the U(1) gauge field âμ in Eq. (2) are different
from the corresponding fields in Eq. (1). A nonrelativistic
version of the duality between Eqs. (1) and (2) was also
proposed by Lee [53]. From this point forth, we will drop the
nondynamical background gauge field Aμ.

In the hopes of understanding the effects of the strong
interactions in Eq. (2), we can generalize the theory in several
ways: we enlarge the gauge symmetry from U(1) → U(NB

c ),
where the integer NB

c > 1 is the rank of the gauge group,
and introduce Nf flavors of bosons transforming in the
fundamental representation of U(NB

c ), i.e., each of the Nf

bosons is a vector with NB
c components. The corresponding

1One can legalize the theory by introducing a new dynamical gauge
field b as a constraint, giving us the Lagrangian

L = |(∂μ − ie∗Aμ − iaμ)φ|2 + g|φ|4

+ i

4π
εμνλ(−kBbμ∂νbλ + 2aμ∂νbλ)
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three-dimensional parameter space of theories is shown in the
left cube in Fig. 1. The labels for the axes are chosen to hold
NB

c /kB finite in the large NB
c limit (within the dimensional

regularization scheme discussed later). The horizontal axis is
on a tan−1 scale to make it finite in length, while the vertical axis
corresponds to the ’t Hooft coupling NB

c /kB , whose norm is
bounded by 1. The physical theory of interest withNf = NB

c =
1 and kB ∈ Z is denoted by a red dot and is located behind the
front face where kB → ∞. Since a generic theory in Fig. 1 is
strongly interacting, reliable predictions are limited to small
regions of the parameter space. The best understood part is
the yellow point in the top-left corner, which corresponds to
the Wilson-Fisher O(NB

c ) vector model, since kB → ∞ faster
than NB

c and, consequently, completely suppresses the gauge
fluctuations. In addition, large Nf expansions [19] (blue axis)
and large NB

c expansions [54] (orange axis) have been carried
out to the subleading order and leading order. The pink point
in the bottom-left corner corresponds to “infinite coupling,”
NB

c /kB = 1 and kB,NB
c → ∞.

Remarkably, the recent Chern-Simons plus matter dualities
sometimes relate a strongly correlated theory to a free one, and
thereby constitute a nonperturbative solution to an interacting
problem. Unfortunately, this does not appear to occur for the
theory described by Eq. (2). Instead, duality relates the IR limit
of Eq. (2) to the IR limit of the theory of a Chern-Simons gauge
field coupled to a Dirac fermion:

L = |(∂μ − iâμ)φ̂|2 + g|φ̂|4 + ikB

4π
εμνλâμ∂νâλ,

�

L = ψ̄γ μ(∂μ − iãμ)ψ + ikF

4π
εμνλTr

(
ãμ∂νãλ + 2

3
ãμãν ãλ

)
.

(3)

In the bottom half of (3), ψ is a two-component fermionic field
transforming in the fundamental representation of U(kB − 1),
ãμ is a U(kB − 1) gauge field, kF = −kB + 1/2, and the γ

matrices satisfy {γ μ,γ ν} = 2δμν . The trace in the non-Abelian
Chern-Simons term is taken with respect to the fundamental
representation. Note that we are working within dimensional
regularization.2 (See Appendix for further details.)

Applying dualities [33,37] to the generalized bosonic theo-
ries with non-Abelian gauge group U(NB

c ) and multiple flavors
Nf , we may schematically write

U
(
NB

c

)
kB,kB with Nf bosons,

�
U

(
kB − NB

c

)
−kB+Nf /2,−kB+Nf /2 with Nf fermions. (4)

The duality in (3) is recovered by setting NB
c = Nf = 1.

For the dualities in (4), the subscripts on U(N ) signify the

2By dimensional regularization, we mean that one contracts tensor
indices in three dimensions, while analytically continuing integrals to
3 − ε dimensions. This is sometimes called dimensional reduction in
the literature [59]. An alternative scheme where one regularizes with
a small Yang-Mills term is equivalent to dimensional regularization,
up to a constant shift of the SU(N ) level, so we will work exclusively
in dimensional regularization for simplicity.

levels of the SU(N ) ⊂ U(N ) and U(1) ⊂ U(N ) Chern-Simons
gauge fields; we will denote the rank of the gauge group in
the fermionic theory of Eq. (4) with the integer NF

c = kB −
NB

c . Armed with the dualities between generalized theories,
we can now consider the three-dimensional parameter space
associated with the fermionic theories (see Fig. 1). Duality
presents the choice of which representation of the same physics
to study.

Figure 1 depicts the duality mappings in (4). We denote
dualities between specific points in Fig. 1 with double-headed
arrows that relate bosonic theories to fermionic theories. We
intentionally chose the vertical axis of the two cubes to point
in opposite directions in order to visually indicate how a
strongly coupled theory on one side can map to a weakly
coupled theory. For example, the yellow point in the bottom
left corner represents the theory of a free fermion maps to an
“infinitely coupled” bosonic theory. Similarly, the pink point
on the top-right corner representing the “infinitely coupled”
fermionic theory maps to the O(NB

c → ∞) Wilson-Fisher
boson. Unfortunately, the physical bosonic theory of interest
(the red point), which is far from any known solvable point in
the bosonic parameter space, maps to another strongly coupled
theory on the fermionic side. Short of being able to directly
access the physical theory, large Nf expansions [20] (blue
axis) and large NF

c expansions [34,54] (orange axis) have been
studied on the purely fermionic side.

In the remainder of this paper, we study the fermionic dual
our physical bosonic theory (red point) using the dualities
stated in (3). We attempt to access this strongly coupled
fermionic theory by employing a Nf � NF

c expansion, valid
within the green region of Fig 1. The dualities in (4) are only
conjectured to hold when Nf � NB

c [37]: by employing the
Nf � NF

c expansion, we are exploring a class of fermionic
theories that is different from the previously studied class of
bosonic theories.

III. N f � Nc EXPANSION

We generalize the fermionic side of Eq. (3) to an arbitrary
number of flavors Nf so that the Lagrangian becomes

L =
Nf∑
i=j

ψ̄j γ
μ(∂μ − iaμ)ψj

+ ikF

4π
εμνλTr

(
aμ∂νaλ + 2

3
aμaνaλ

)
. (5)

[We have dropped the tildes on a in Eq. (5).] The fermionic
dual of the physical boson theory has Nf = 1, NB

c = 1, NF
c =

kB − NB
c , and kF = −kB + Nf /2.

We calculate the correlation length exponent ν via the
definition ν−1 = 3 − [ψ̄ψ(x)], which comes from the fact that
the correlation length ξ ∼ m−1 as the mass m is the critical
tuning parameter [19]. To obtain ν, we will compute the scaling
dimension of the (momentum space) mass operator J0(p) =
(ψ̄ψ)(p). Recall that in position space, the scaling dimension
δ is defined by the algebraic decay of 〈J0(x)J0(0)〉 ∼ x−2δ .
Upon Fourier transforming, we have 〈J0(p)J0(−p)〉 ∼ p2δ−d ,
where d = 3 is the space-time dimension. We control the
calculation in the Nf � NF

c limit taking kF ,NF
c ,Nf → ∞
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while keeping the ratios λ = Nf /kF and α = NF
c /Nf finite,

along with α  1. Therefore we calculate perturbatively in
α to first subleading order and exactly in λ. Note that λ can
(effectively) take any value inR—it is not the ’t Hooft coupling
NF

c /kF .
This calculation was first investigated in a beautiful paper

by Gurucharan and Prakash, where the primary motivation was
to find tractable nonsupersymmetric conformal field theories
with gravitational duals [56]. Here, we use Eq. (5) to model
interplateaux transitions and, in the course of our study, we
correct a minor error in Ref. [56].

The leading order piece δ(0) of the scaling dimension of the
mass operator J0 in d Euclidean dimensions is related to the
leading order decay of the correlator by

〈J0(p)J0(−p)〉leading ∼ p2δ(0)−d , (6)

where p is the momentum inserted at the J0 vertex. Only the
tree-level diagram contributes, which results in δ(0) = 2. To
calculate the anomalous dimension δ(1) of the mass operator
J0, we extract the logarithmic divergences of the two-point
correlator as in, e.g., Ref. [57]:

〈J0J0〉 = (1 − 2δ(1) ln � + . . .)〈J0J0〉leading. (7)

Keeping terms to O(α), we arrive at the result

[ψ̄ψ] = 2 − α
64λ2

64 + π2λ2

(
1

3
+ 2 · 1

2

64 − λ2π2

64 + λ2π2

)
(8)

= 2 − α
128λ2

3

128 − π2λ2

(64 + π2λ2)2
. (9)

The factor of “2” appearing before the second term in the
parentheses above is the quantitative difference between our
result and that in Ref. [56], and results from an additional
Feynman diagram. For calculational details, see the Appendix.
Therefore we arrive at the result

ν = 1 − α
128λ2

3

128 − π2λ2

(64 + π2λ2)2
. (10)

We plot the anomalous dimension correction to ν at O(α)
in Fig. 2 as a function of the original bosonic parameters using
the relationλ−1 = −kB/Nf + 1/2, with they axis measured in
units of α. Note that the correction is positive only when 1.29 <

Nf /kB < 4.50. In the fermionic variables, this corresponds to
λ > 3.6.

If we want to consider the 0 → 1/3 transition, then we
should set Nf = 1, NB

c = 1, e∗ = 1, and kB = 3. Substituting
these values into Eq. (9), we find ν = 1 − 0.4014. In this case,
the correction to ν is negative. The dynamical critical exponent
z = 1 automatically, since our theory is Lorentz-invariant.

Chen, Fisher, and Wu studied the Abelian version of Eq. (5)
given by

L =
Nf∑
i=1

ψ̄iγ
μ(∂μ − iaμ)ψi + ikF

4π
εμνλaμ∂νaλ, (11)

where aμ is a U(1) gauge field. We have rescaled aμ to make the
comparison between their theory and ours more transparent.
They extract ν from the scaling dimension [ψ̄ψ] in a large Nf

FIG. 2. A plot of the anomalous dimension correction to ν toO(α)
in the original bosonic parameters. The y axis is in units of α. It is
positive for 1.29 < Nf /kB < 4.50. The parameter λ used in Eq. (10)
is related to Nf /kB by λ−1 = −kB/Nf + 1/2.

expansion and arrive at the result

νCFW = 1 − 1

Nf

128λ2
CFW

3

128 − π2λ2
CFW(

64 + π2λ2
CFW

)2 , (12)

where λCFW = Nf /kF . Comparing Eqs. (10) and (12), we
see that the two expressions formally match. To O(α), our
non-Abelian extension to U(NF

c ) only contributes an additional
color factor. It turns out that the diagrams contributing to ν in
a Nf � Nc expansion are the same as those of a large Nf

expansion to subleading order, up to color factors. At higher
orders, this equivalence is no longer expected to be true: the
subleading in Nf diagrams are planar because gauge lines are
1/Nf -suppressed. (This formal equivalence of expansions to
subleading order is likely to be true on the bosonic side as well,
though we have not explicitly verified this.) Note, however,
that the two models give different results when considering
a particular fractional quantum Hall transition. For example,
in the 0 → 1/3 transition, our model has NF

c = α = 2 and
kF = −5/2, so ν = 1 − 0.4014. In the model studied by Chen,
Fisher, and Wu, they set Nf = 1, NF

c = 1, e∗ = 1/3, and kF =
3/2 [17,20], corresponding to “αCFW = 1” and λCFW = 2/3,
so that νCFW = 1 − 0.5012. Although the expressions for ν for-
mally agree, the physical values of the parameters are different,
so they should be thought of as describing different physics.3

3This conclusion might be further supported by the fact that the
bosonization dual of the model studied by Chen, Fisher, and Wu
involves a boson coupled to a Chern-Simons gauge field with non-
Abelian gauge group, rather than an Abelian gauge field. In particular,

U(1)kB−1/2,kB−1/2 with one fermion,

�
U(kB − 1)−kB ,−kB with one boson.
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IV. DISCUSSION

The observations of superuniversality and the anomalously
large correlation exponent ν associated with quantum Hall
interplateaux transitions remain a long-standing conundrum.
Duality motivates an exploration of a large space of theories
that may provide new insight. We focused on an effective
description of a fractional quantum Hall transition involving
a non-Abelian Chern-Simons gauge field with U(Nc) gauge
group and Nf fermions. This theory is dual to the critical
theory of an Abelian Chern-Simons gauge field coupled to a
boson. We calculated the correlation length exponent ν to first
subleading order in the large Nf � Nc expansion, filling in
the green region in Fig. 1. We found the Nf � NF

c expansion
to be formally equivalent to a fermionic large Nf expansion
(blue axis) to first subleading order [20], although the precise
values of the ν inferred differ. Accordingly the exponent ν

continues to depend on the pair of plateaux in question, rather
than showing any superuniversality. Moreover, the calculated
exponent ν continues to be far below the experimental value.

Clearly there are many aspects of the physical problem
that were left out in our model. It may be that translational
symmetry breaking needs to be incorporated so as to include
the effect of disorder. Also, the thus far unexplored subleading
correction in the large Nc limit may prove enlightening.

However, it appears plausible that calculating the exponent
order by order with respect to some perturbative control
parameter may not be the best strategy. Rather, it would be
interesting to address the apparent superuniversality in a more
wholesome manner from the outset [58].
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APPENDIX: DETAILS

The Lagrangian we study is

L =
Nf∑
i=1

ψ̄iγ
μ(∂μ − iaμ)ψi + ikF

4π
εμνλTr

(
aμ∂νaλ + 2

3
aμaνaλ

)
. (A1)

Define light-cone coordinates via analytic continuation to be x± = (x1 ± ix2)/
√

2, and let x2
s = x2

1 + x2
2 = 2x+x−. We will

work in light-cone gauge a− = 0, which decouples the ghosts and removes the cubic gauge interaction term [56]. We will also
take γ i = σ i , the Pauli matrices. We normalize our gauge group generators by Tr T aT b = δab/2. We will regularize our theory by
using a momentum cutoff � in the 1-2 plane and dimensional-regularization in the x3 direction, as has been done by others [36,56].

The Feynman rules for the bare propagators and interactions are

Under duality, we expect φ†φ ↔ ψ̄ψ . Hence ν−1 = 3 − [ψ̄ψ] [19]. In what follows, we will be calculating the scaling
dimension [ψ̄ψ].

Denote the mass operator in momentum space as J0(p) = (ψ̄ψ)(p), where p is the momentum inserted into the vertex. The
leading order in α term of 〈J0(p)J0(−p)〉 ∼ p, and we know that the leading order scaling dimension �(0) of the mass operator
J0 is given by 〈J0(p)J0(−p)〉leading ∼ p2�(0)−d , where d is the number of space-time dimensions. Hence the scaling dimension
of J0 at leading order in (2+1)D is 2. We will calculate the anomalous dimension δ(1) of J0, which amounts to extracting the
logarithmic divergences of the two-point function as [57]

〈J0J0〉 = (1 − 2δ(1) ln � + . . .)〈J0J0〉leading. (A2)
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First, let us calculate the exact gauge propagator Gμν to leading order in α, which we denote by a squiggle. The only diagrams
that contribute are strings of bubble diagrams, and hence satisfies the following Schwinger-Dyson equation:

(A3)

The 1PI self-energy diagram �μν at leading order is given by

�μν(p) = (−1) Tr(T aT b)δab Tr
∫

d3q

(2π )3

−i/q

q2
(iγ μ)

−i(/p + /q)

(p + q)2
(iγ ν) = −Nf p

32

(
δμν − pμpν

p2

)
. (A4)

Summing the bubbles via G(p) = (1 − D�)−1D(p), we get

(
G33 G3+
G+3 G++

)
(p) = 1

Nf

2π2p2
+

pp4
s

64

64 + π2λ2

(
λ2p2

−
8iλ
π

p−p − λ2p−p3

− 8iλ
π

p−p − λ2p−p3 −p2
s λ

2

)
. (A5)

There are four diagrams at subleading order in α that contribute to 〈J0J0〉. We denote a J0 insertion by a crossed circle.
First, the fermion self-energy contribution:

We focus on the fermion self-energy subdiagram first:

�ψ (p) = N

2

∫
d3q

(2π )3
(iγ μ)

−i(/p + /q)

(p + q)2
(iγ ν)Gμν(q). (A6)

Using the relations γ +γ − = 1 + γ 3, γ −γ + = 1 − γ 3, and (γ 3)2 = 1, we get that

γ μ
/pγ νGμν = G33(p3γ

3 − p−γ − − p+γ +) + (G+3 + G3+)(p3γ
+ + p−γ 3) + (G+3 − G3+)p− + 2G++p−γ +. (A7)

Substituting /p → /p + /q in the above equation, we get

�ψ (p) = iα
64π2

64 + π2λ2

∫
d3q

(2π )3

1

(p + q)2
(Kμγ μ + KI ), (A8)

where

K− = −p− + q−
4q

λ2, (A9)

K+ = −p+ + q+
4q

λ2 − (p3 + q3)
q+q3

qq2
s

λ2 − 2p−
q2

+
qq2

s

λ2 − q+
q

λ2, (A10)

K3 = p3 + q3

4q
λ2 − p−

q3q+
qq2

s

λ2 − q3

2q
λ2, (A11)

KI = −p−
8i

π

q+
q2

s

λ − 4i

π
λ. (A12)
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We use Feynman parameters to evaluate these integrals, and we will only keep the logarithmic divergences. The relevant
formulas are ∫

d3q

(2π )3

f (q)

q(p + q)2
= 1

2

∫ 1

0
dx

∫
d3q

(2π )3
(1 − x)−1/2 f (q − xp)

(q2 + x(1 − x)p2)3/2
, (A13)

∫
d3q

(2π )3

f (q)

q2(p + q)2
=

∫ 1

0
dx

∫
d3q

(2π )3

f (q − xp)

(q2 + x(1 − x)p2)2
, (A14)

∫
d3q

(2π )3

f (q3,�qs)

q2
s q(p + q)2

= 3

4

∫ 1

0
dy

∫ 1−y

0
dz

∫
d3q

(2π )3
y−1/2

f
(
q3 − z

y+z
p3,�qs − z �ps

)
(
q2

s + z(1 − z)p2
s + (y + z)q2

3 + yz

y+z
p2

3

)5/2 . (A15)

The result for the fermionic self-energy is

�ψ (p) = iα
64

64 + π2λ2

λ2

24
(−pμγ μ + 6p3γ

3 + 12p+γ +) ln � + . . . . (A16)

Putting this into the two-point function at zero external momenta, we can extract the logarithmic contribution via

1

2
Tr

/p

ip2
�ψ (p) = 1

2
Tr

/p

ip2
iα

64

64 + π2λ2

λ2

24
(−pμγ μ + 6p3γ

3 + 12p+γ +) ln � (A17)

= α
64λ2

64 + π2λ2

λ2

24

(−p2 + 6p2
3 + 6p2

s

) 1

p2
ln � (A18)

= α
64λ2

64 + π2λ2

5

24
ln �. (A19)

Since this diagram contributes with a weight of 2, it contributes δ1 = −α 64λ2

64+π2λ2
5

24 .
Next, the one-loop vertex correction,

Note that to extract logarithmic divergences it is easier to calculate the vertex correction with external momenta 0 than to
calculate the full two-loop integral. Also, since we will combine the two free ends to a single vertex, we only care about the
identity component, which can be extracted by applying 1/2 Tr over the gamma matrices. Hence the divergence is given by

N

2

1

2
Tr

∫
d3q

(2π )3
(iγ μ)

1

−q2
(iγ ν)Gμν(q) = α

λ2

64 + π2λ2

1

8
ln �. (A20)

Each vertex contributes once to the divergence, so there is an overall factor of 2. In total, this diagram contributes δ2 = −α 64λ2

64+π2λ2
1
8 .

Finally, the last diagrams

These are two-loop vertex corrections, so again it is simpler to focus only on the vertex. Note that since we will combine the
two free ends to a single vertex, we only care about the identity component, which can be extracted by applying 1/2 Tr over the
gamma matrices. We focus first on the left one.

(−1)Nf

N

4

∫
d3p

(2π )3

∫
d3k

(2π )3

1

2
Tr

(
1

i /p

1

i /p
γ σ 1

i(/p + /k)
γ ν

)
Tr

(
γ μ 1

i/k
γ η

)
Gμν(k)Gση(k) = α

1

2

64

64 + π2λ2

64 − π2λ2

64 + π2λ2
ln �.

(A21)
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This diagram contributes with a factor of 2 because there are two vertices. The right diagram also gives the same result because
of the relation Tr γ αγ βγ δ = − Tr γ γ γ βγ α . Hence the two diagrams together contribute δ3 = −α 64

64+π2λ2
64−π2λ2

64+π2λ2 .
Therefore the scaling dimension of ψ̄ψ is

[ψ̄ψ] = 2 − (δ1 + δ2 + δ3) = 2 − α
128λ2

3

128 − π2λ2

(64 + π2λ2)2
. (A22)

Note that our answer differs with Gurucharan and Prakash, as they did not include the last diagram which contributes an extra
factor of 2 in δ3.
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