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Dirac spin-orbit torques and charge pumping at the surface of topological insulators
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We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the
linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry
compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction.
In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator
surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an
enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have
important consequences in terms of magnetization switching.
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I. INTRODUCTION

Not only has spintronics yielded to the market real-deal
solutions for low-energy, high-density nonvolatile memory
[1], but it has also provided a fundamental understanding of
the different mechanisms by which efficient electrical control
of spin currents and magnetic configurations are possible.
The spin-transfer-torque (STT) mechanism [2], which is
central to a whole generation of memory devices, exploits the
transfer of spin angular momentum between a spin-current
flow and the local magnetization of a ferromagnetic (FM)
layer, thereby enabling magnetization switching or precession
[3]. A critical hurdle for traditional STT setups is the need
for a spin-polarizer generating the spin current: STT devices
comprise a number of ultrathin (anti)ferromagnetic, metallic,
and insulating layers (see, e.g., Ref. [4]), rendering the design
of architectures rather complex.

Research to circumvent this issue and enhance the effi-
ciency of torque generation led to the proposal of the spin-orbit
torques (SOTs) [5,6], which arise from the transfer of angular
momentum between a flowing charge current and the local
magnetization mediated by spin-orbit coupling. Systems with
inversion symmetry breaking, such as magnetic multilayers in-
volving heavy metals (HMs), are excellent platforms for the re-
alization of magnetization reversal induced by in-plane charge
currents [7,8]: the HM provides a large spin Hall effect (SHE),
while the FM/HM interface supports sizable Rashba spin-orbit
coupling [9], both at the origin of large SOTs [10–12]. Various
features have been identified experimentally, such as large
angular anisotropies [13] and complex materials dependence
[14]. Innovative concepts such as spin-wave- mediated [15]
and intrinsic SOTs have also been introduced [16,17], thereby
broadening the field of spin-orbitronics which opens new roads
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for spin devices made of engineered (non)magnetic materials
and operated without magnetic fields [18].

The recent observation of SOTs in magnetic bilayers
involving topological insulators (TIs) offers an alternative
route towards efficient electrical control of the magnetization
[19,20]. A three-dimensional (3D) TI is topologically distinct
from a conventional 3D band insulator: it possesses an insu-
lating bulk while hosting chiral metallic channels at the edges,
where electrons are described as massless Dirac fermions
with tight interlock between spin and momentum [21]. The
strong spin-momentum locking results in large spin-charge
conversion efficiency [22–25], as well as large SOTs enabling
the control of adjacent magnetic layers [26,27]. The main
strategies adopted so far consist of either doping the TI with
magnetic impurities [20,28] or using the proximity effect by
coating it with (possibly insulating) ferromagnets [19,29].

Various phenomena such as the topological magnetoelectric
effect [30,31], STT and current-driven magnetization dynam-
ics [32–37], the interplay between spin and charge [38–42],
and spin transport in magnetic TIs [43–48] have been studied
theoretically. Despite these important theoretical efforts, major
puzzles remain to be understood such as the emergence
of gigantic dampinglike torque [19,20], the sizable angular
dependence of the SOT [20], and the significant discrepancies
between the spin-charge conversion rates reported in the SOT
experiments [19,20,26,27] and the spin-pumping experiments
[22–25]. It is still unclear whether the spin-charge conversion
efficiencies reported experimentally can be solely attributed
to topological surface states [49]. It is therefore crucial to
establish a solid understanding of the physics at stake at the
magnetic surface of TIs in order to properly interpret these
experimental results.

In this work, we explore the nature and the symmetry
of nonequilibrium spin densities and their coupling to the
magnetic order at TI magnetic surfaces and discuss their
differences with respect to other spin-orbit-generated spin
densities via the spin Hall effect [10] and Rashba effect
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[5,11]. In Sec. II, we present the model and address the
electrically driven Dirac SOTs in magnetized topological
insulators using the Kubo formula within the linear-response
theory. We show that the effective Dirac SOT is of the
form T = T‖(mz)mzm × E + T⊥(mz)m × (z × E), where the
in-plane and out-of-plane torques T‖,⊥(mz) exhibit a sizable
anisotropy (mz is the projection of the magnetization direction
m to the normal z to the TI surface and E is the applied electric
field). In Sec. III, we discuss the reciprocal effect, i.e., the
charge current pumped by magnetization dynamics, and show
that it produces an enhanced anisotropic magnetic damping
torque. Finally, in Sec. IV, we demonstrate numerically using
the Landau-Lifshitz-Gilbert equation that the Dirac torque
can reverse the magnetization in layers with perpendicular
magnetic anisotropy but is formally less efficient than the
torque arising from spin Hall effect.

II. ELECTRICALLY DRIVEN DIRAC SOTS

Let us start by considering the top surface of a three-
dimensional TI in the presence of magnetic exchange, as
depicted in Fig. 1. Near the Dirac point, the simplest low-
energy effective Hamiltonian of the conducting surface states
reads

Ĥ = Ĥ0 + Ĥi, (1)

Ĥ0 = h̄vσ̂ · (k × z) + �σ̂ · m − εF, (2)

Ĥi =
∑

i

V0δ(r − ri), (3)

where Ĥ0 is the translationally invariant and time-independent
unperturbed Hamiltonian and Ĥi accounts for random short-
range disorder, treated as a perturbation in this work. In Eq. (2),
the first term is the usual Rashba-type spin-orbit coupling, with
v being the Fermi velocity (�6 × 105 m s−1 in Bi2Se3 and
4.3 × 105 m s−1 in Bi2Te3). The electron transport is confined

FIG. 1. (a) Bilayer consisting of a TI substrate with a ferro-
magnetic overlayer. The black arrows represent the local magnetic
moment with overall magnetization direction m. The electric field
E is applied along x and generates two spin-density components,
S⊥ ∼ z × E (red arrow) and S‖ ∼ mzE (green arrow). (b) Schematics
of the two-dimensional band structure at the magnetic surface of the
TI when m = z. The red (blue) arrows represent the spin direction in
the conduction (valence) band, and the perpendicular magnetization
opens a gap 2�.

in the (x,y) plane, and k = (kx,ky,0) = k(cos φk, sin φk,0).
The second term in Eq. (2) is the exchange coupling between
itinerant and local spins. Here, σ̂ is the vector of Pauli matrices,
� is the exchange energy, and the magnetization direction
m = (mx,my,mz) = (sin θ cos φ, sin θ sin φ, cos θ ) is uniform
and can point along any (general) direction. The last term is
the Fermi energy, emphasizing that we are interested in the
metallic regime, away from the charge neutrality point.

The out-of-plane magnetization component is responsible
for the gap opening in the TI spectrum via �mzσ̂z, thereby
providing the mass of Dirac fermions. Indeed, the unperturbed
Hamiltonian Ĥ0 can be rewritten as

Ĥ0 = h̄v(z × σ̂ ) · (k + eA) + �mzσ̂z − εF, (4)

where eA = �
h̄v

z × m is identified as the effective vector
potential [34]. Hence, the x and y components of the mag-
netization direction do not open a gap in the energy dispersion
and only shift the Dirac cone along the kx,y direction. These
in-plane magnetization components are not expected to impact
any physical observables as they can be straightforwardly
removed by redefining the position of the Dirac node. Another
particular feature of this model is that the velocity operator
v̂ = ∂h̄kĤ0 is indeed directly proportional to the spin operator
as v̂ = v(z × σ̂ ), drawing an equivalence between the electric
current j at the surface of magnetic TIs and the in-plane
components of the spin density S [37,43,46,50],

j = −evz × S. (5)

This spin-velocity identity in TIs is echoed in the expressions
of the response functions such as the conductivity tensor
characterizing the electrical transport and the dynamical spin
susceptibility. Therefore, the coefficients of the dampinglike
and fieldlike torques derived below correspond to the diagonal
and off-diagonal Hall conductivities, respectively, due to the
spin-momentum lock. The anomalous Hall conductivity in
particular has been analyzed by others in Dirac systems
[51–55] and Weyl semimetals [57,58].

The chiral-basis eigenstates that diagonalize the unper-
turbed Dirac Hamiltonian Ĥ0 are explicitly written as

|uk
+〉 =

(
eiγk cos χk

2

sin χk

2

)
, |uk

−〉 =
(−eiγk sin χk

2

cos χk

2

)
, (6)

with

tan γk = h̄vk cos φk − � sin φ sin θ

h̄vk sin φk + � cos φ sin θ
, cos χk = �∣∣εs

k

∣∣ cos θ,

and εs
k = s

√
h̄2v2k2 + �2 + 2h̄vk� sin θ sin(φk − φ). The

expectation value of the spin density for state s is therefore

〈S〉s = �

εs
k

m − h̄v

εs
k

z × k. (7)

The expectation value of the spin density contains two distinct
contributions, a component aligned with the magnetization
∼m and an in-plane component proportional to ∼z × k. Only
the latter produces a nonequilibrium spin density, and there-
fore, one should not expect a current-driven Sz component.

Let us first express the electrically driven nonequilibrium
spin density δS in the framework of linear response theory.
The Streda-Smrcka version [59] of the Kubo formula yields
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two contributions [51],

δSI = h̄

2πV Re
∫ +∞

−∞
dε∂εf (ε)tr

[
σ̂ ĜA

ε (v̂ · eE)
(
ĜR

ε − ĜA
ε

)]
,

(8)

δSII = h̄

2πV Re
∫ +∞

−∞
dεf (ε)tr

[
σ̂ ĜR

ε (v̂ · eE)∂εĜ
R
ε

− σ̂∂εĜ
R
ε (v̂ · eE)ĜR

ε

]
. (9)

Ĝα
ε are the Green’s functions defined in momentum and energy

space, V is the volume of the unit cell, and tr accounts for
the trace on the spin space as well as the summation over
the k space. The Fermi-surface contribution δSI ∝ ∂εf (ε) is
complemented by the Fermi-sea contribution δSII. However,
in the case of any two-dimensional Dirac model such as the
TI surface considered here, this second contribution vanishes
in the metallic regime, i.e., εF > � > 0 (see the Appendix
for details). The weak impurities we consider here not only
broaden the energy levels by introducing a finite lifetime τ

to the quasiparticle in the chiral bands but also change the
eigenstates. The quasiparticle lifetime broadening induced by
the presence of impurities is reflected in the retarded self-
energy, which is defined self-consistently as [46]

�̂R = niV
2

0

∫
d2k

(2π )2

[
ĜR

0 + ∂kĜ
R(�̂R)

]
. (10)

For Dirac electrons, the calculation of the entire retarded self-
energy in an environment with δ-type impurities has to be done
with care as logarithmic divergences naturally occur [60]. The
first term of the self-energy is diagonal (only with σ̂0 and σ̂z

components) and k independent and is readily written as

�̂R
‖ = − ih̄

4τ
(1 + βmzσ̂z), (11)

where the impurity scattering rate is given by h̄/τ =
niV

2
0 kF/h̄v and β = �/εF is the spin polarization. The second

term is k dependent and off-diagonal (≡�xσ̂x + �yσ̂y), and
the k integration should be done here with the impurity-range
ultraviolet cutoff [61] in order to respect gauge invariance
via the Takahashi-Ward identity [62]. The detailed procedure
described in Refs. [46,61] leads to the renormalization of
the velocity of the Dirac electron as ṽ = (1 − ξ )v with

ξ = niV
2

0

4h̄2v2 � 1 within the weak impurity limit and the full

renormalized retarded self-energy reading now as �̂R = �̂R
‖ +

h̄ξ ṽ[(σ̂ × k) · z]. In the self-consistent Born approximation,
the retarded Green’s function reads

ĜR
ε = ε + [h̄ṽ(z × k) + �m] · σ̂ + ih̄

4τ
(1 − βmzσ̂z)

(ε − ε+
k + i�+)(ε − ε−

k + i�−)
, (12)

where �± = h̄
4τ

(1 ± β2m2
z). Inserting the perturbed Green’s

function, Eq. (12), into Eq. (8) is not sufficient to fully
capture the impact of the impurities. As a matter of fact,
the proper calculation of δS includes a variety of crossing
and noncrossing diagrams of the same order which have
to be properly accounted for [55,56,62]. We adopt here the
common approximation by selecting only the noncrossing
ladder diagrams through the so-called vertex correction to

the spin operator [62,63]. Notice that it has been shown
recently that a more accurate evaluation should include a
subclass of crossing diagrams in addition to the standard
set of noncrossing ones [55,56]. However, since we assume
a low impurity concentration, the average distance between
the impurities is larger than the Fermi wavelength of the
electronic carriers, and we limit ourselves to the ladder
noncrossing approximation. The spin operator σ̂ in Eq. (8)
is then replaced by a renormalized operator ϒ̂ that must
satisfy ϒ̂i = σ̂i + niV

2
0

∫
d2k

(2π)2 Ĝ
Rϒ̂iĜ

A [51]. By writing ϒ̂i

in the tensor form (ϒ̂i = �jς
j

i σ̂j , j = 0,x,y,z), we find the
two components ϒ̂x = Aσx + Bσy and ϒ̂y = −Bσx + Aσy ,

where A = 2 1+β2m2
z

1+3β2m2
z

and B = 2h̄
τεF

βmz(1+β2m2
z )

(1+3β2m2
z )2 . The vertex-

corrected version of the spin density δS in Eq. (8) gives

δS = − τεF

2h̄ṽπ

1 − β2m2
z

1 + 3β2m2
z

z × eE − β

ṽπ

1 + β2m2
z(

1 + 3β2m2
z

)2 mzeE.

(13)

First, we emphasize that the nonequilibrium electrically driven
spin density is in plane and does not have any z component,
contrary to the Rashba model [11,17]. As a matter of fact,
in the Dirac model the flowing electrons experience only
the out-of-plane component of the magnetization [∼�mzσ̂z

in Eq. (4)], and therefore, their precession about the mag-
netization direction mixes only Sx and Sy components and
does not yield any Sz component. The Dirac spin-orbit torque,
τ = (2�/h̄)m × δS, straightforwardly yields

τ = − βτε2
F

h̄2ṽπ

1 − β2m2
z

1 + 3β2m2
z

m × (z × eE)

− 2β2εF

h̄ṽπ

1 + β2m2
z(

1 + 3β2m2
z

)2 mzm × eE. (14)

Notice that this form is more general than the one derived
in Ref. [46], which is restricted to m = z. The effective
Dirac SOT is found to be of the form τ = τ‖mzm × eE +
τ⊥m × (z × eE), a form similar to the one obtained in the
limit of large Rashba spin-orbit coupling in a magnetic
Rashba gas [17]. The first term is odd upon magnetization
reversal, proportional to the current flow (∝τ ) and acts like
a fieldlike torque. In contrast, the second term, ∼mzm × eE,
is even in magnetization reversal, independent of scattering,
and acts like a damping torque. While the former arises
from the traditional inverse spin-galvanic effect [64], the
latter is the magnetoelectric coupling identified by Garate
and Franz [31]. This damping torque is quite different from
the dampinglike torque stemming from the spin Hall effect,
usually observed in magnetic bilayers involving heavy metals
[8,13,14]. Indeed, the magnetoelectric effect at the surface
of topological insulators vanishes when the magnetization
lies in the plane of the surface [31], while the SHE-induced
damping torque (∼m × [(z × E) × m]) remains finite. Notice
also that the sign of the SOT reported in Eq. (14) is opposite
to the one derived for the magnetic Rashba gas [17], which
is attributable to the spin chirality of the Dirac conduction
band. Due to the identity between the spin and the velocity
operators, Eq. (5), the fieldlike and dampinglike Dirac torque
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coefficients correspond to the longitudinal and transverse
(Hall) conductivities, respectively [46,51,52]. Finally, the SOT
in Eq. (14) exhibits a complex dependence as a function of the
magnetization direction, associated with the distortion of the
band structure when the magnetization lies perpendicular to
the surface.

III. CHARGE PUMPING AND ANISOTROPIC DAMPING

While a charge current can exert a torque on the local
magnetization, a precessing magnetization can pump a charge
current [65,66]. These two effects are related to each other
via the Onsager reciprocity relation and can be treated on
equal footing. The spin-to-charge conversion process has
been investigated experimentally in ferromagnet/topological
insulator heterostructures [22–25] (e.g., FM/Bi2Se3), and some
of its aspects have been treated theoretically [47,48].

The magnetization dynamics under an external magnetic
field and SOT is given by the Landau-Lifshitz-Gilbert (LLG)
equation

∂tm = (γ /Ms)m × ∂mF + κ̂ · E. (15)

Here, ∂mF is the functional derivative of the magnetic energy
density F that governs the dynamics of the magnetization
in the absence of charge flow, while E is the electric field
that drives the SOT through the tensor κ̂ . γ and Ms are the
absolute value of the gyromagnetic ratio and the saturation
magnetization, respectively. The charge-current density reads

Jc = δ̂ · ∂mF + ĝ · E, (16)

where the electric field drives the charge current through
the conductivity tensor ĝ, while the magnetization dynamics
pumps a charge current through the tensor δ̂. Let us now
consider a magnetic layer of width w, thickness d, length
L, and section normal to the current flow S = wd. The
particle current is defined as ∂tni = SJc,i/e, and the electric
and magnetic potentials driving the charge and magnetization
dynamics read f

j
e = LeEj , f

j
m = �∂mj

F , respectively. Here,
� = Lwd is the volume of the magnet. Therefore, Eqs. (15)
and (16) can be rewritten in the more convenient form(

∂tni

∂tmi

)
= L̂

(
f

j
e

f
j
m

)
,

where the Onsager coefficients in L̂ are explicitly expressed
as(

L
ni ,f

j
e

L
ni ,f

j
m

L
mi,f

j
e

L
mi,f

j
m

)
=

(
S

Le2 gij
1
Le

δij

1
Le

κij − γ

Ms�
(ei × ej ) · m

)
. (17)

When applying the Onsager reciprocity principle [66,67]

L
ni,f

j
m
(m) = −Lmj ,f i

e
(−m), (18)

we get δij (m) = −κji(−m). In the previous section [see
Eq. (14)], we showed that the torque density τ at the surface
of the TI reads

τ = τ‖mzm × E + τ⊥m × (z × E), (19)

where τ‖,⊥ are the dampinglike and fieldlike components,
respectively. The total torque exerted on the ferromagnet is

then T = κ̂ · E = ∫
dAτ (A = Lw is the surface area), which

yields

κij = μB

Msd
{τ‖mz(m × ej ) · ei + τ⊥[m × (z × ej )] · ei}. (20)

By direct application of the Onsager reciprocity relation, we
then deduce the charge-pumping coefficients in TIs,

δij = μB

Msd
{−τ‖mz(m × ei) · ej + τ⊥[m × (z × ei)] · ej }.

(21)

The charge current pumped by the magnetization dynamics
simply reads

Jpump
c = h̄

2d
(τ‖mz∂tm + τ⊥z × ∂tm). (22)

This equation establishes the correspondence between the
current-driven Dirac SOT and the charge current pumped by a
time-varying magnetization. By virtue of Onsager reciprocity,
the results and conclusions drawn above for the SOT apply
straightforwardly to the charge pumping through Eq. (22),
in particular the second component, ∼z × ∂tm, dominates in
the metallic regime since τ⊥ > τ‖. Notice that Jpump

c is the
current density flowing in the magnetic volume and is therefore
inversely proportional to the thickness d.

The charge current pumped at the surface of the TI,
dJpump

c , also induces an interfacial nonequilibrium spin den-
sity δSpump = (d/ev)z × Jpump

c [see Eq. (5)]. In turn, this
pumped interfacial spin density induces a torque, Tpump =
(2�/h̄)

∫
dAm × δSpump, that reads

Tpump = μB

Msd

�

ev
τ⊥m × [z × (∂tm × z)]

+ μB

Msd

�

ev
τ‖m2

zz × (∂tm × z). (23)

The first term is odd upon time-reversal operation (∂t → −∂t ,
m → −m), while the second term is even. Accordingly, the
first term contributes to the magnetic damping, while the
second term renormalizes the gyromagnetic ratio. In particular,
the damping torque acts only on the in-plane components of
the magnetization (mx,my), thereby creating an anisotropic
damping. The total magnetic damping then reads

Tdamping = −
(

α + μB

Msd

�

ev
τ⊥

)
(∂tmxx + ∂tmyy) + α∂tmzz.

(24)

This anisotropic magnetic relaxation echoes the fa-
mous D’yakonov-Perel’ spin relaxation emerging in two-
dimensional electron gases [68]. In recent experimental reports
[19,20,27], the electrical torque efficiency in TIs ranges from
(μB/γMsd)τ⊥ ≈ 10−9 T m V−1 [19] to ≈10−7 T m V−1

[20,27], depending on the temperature and thickness of the
ferromagnet. Hence, adopting standard materials parameters
(h̄v ∼ 4 eV Å, � ∼ 1 eV), we obtain a damping enhancement
of (μB/Msd)(�/ev)τ⊥ ≈ 3 × 10−4 to 3 × 10−2, which is
experimentally measurable. For the sake of comparison, the
enhanced damping observed in Bi2Se3/CoFeB bilayers lies
between ∼0.03 and ∼0.12, with wide variability from sample
to sample [24].
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IV. MAGNETIZATION SWITCHING BY DIRAC SOT

We conclude this study by analyzing the impact of the
Dirac dampinglike torque on the magnetization reversal. In
particular, we are interested in comparing the ability of the
dampinglike Dirac SOT (∼mzm × E) with the dampinglike
SHE-induced SOT [8] (∼m × [(z × E) × m]) to switch the
magnetization direction of a perpendicularly magnetized FM.
We study the dynamics of the magnetization within the
standard macrospin approximation and numerically solve the
LLG equation of motion supplemented by SOT,

∂tm = −γ m × Heff + αm × ∂tm + Tdirac/she, (25)

where Heff is the effective field incorporating the demagne-
tizing field and/or an external applied magnetic field, while
the last term, Tdirac/she, represents the (Dirac or SHE-induced)
dampinglike SOT. In the configuration we adopt, the current
is driven along x, and the magnetic anisotropy is along z. The
Dirac dampinglike SOT is therefore Tdirac = γHdirmzm × x,
while the SHE-induced SOT is Tshe = γHshem × (y × m),
with Hdir/she being the strength of the torque. Solving the LLG
equation [Eq. (25)] while varying both the in-plane applied
magnetic field Hxx and the SOT strength, one obtains the
switching phase diagram of the macrospin as displayed in
Fig. 2. Notice that Fig. 2(b) has been calculated previously [8]
and is reproduced here only for comparison.

Both diagrams display the same general shape: a central
diamondlike region (green) denotes the bistable state where
both +z and −z states are stable. This region is surrounded
by four regions of monostable states (blue or red), where only
the +z or −z state is stable. Besides these general features, we
observe two major differences. First, the horizontal extension
of the central diamond is two times larger in the case of
Dirac SOT than for SHE-induced SOT, which means that the
SHE-induced SOT is twice as efficient as the Dirac SOT. This
can be understood easily as the SHE-induced SOT has the form
m × (y × m) = mzm × x − mxm × z, while the Dirac damp-
inglike SOT is simply ∼mzm × x. A second interesting aspect
is the shape of the transitions between the monostable regions
(red and blue). In the case of SHE-induced SOT, when varying
the in-plane field Hx , there is a continuous variation between
the two opposite stable states (from blue to red and from red
to blue). In contrast, in the case of Dirac SOT, the transition
between the blue and red regions is much more abrupt, which
is related to the vanishing of the Dirac dampinglike SOT when
the magnetization lies in the plane of the surface.

FIG. 2. Calculated switching phase diagram with an applied in-
plane field along x for a current-induced (a) Dirac torque and (b) spin
Hall torque (retrieve results from Ref. [8])

V. CONCLUSION

To summarize, we have analytically derived the electrically
driven SOTs and charge pumping at the magnetic surface of a
TI. While the fieldlike Dirac torque has the same geometrical
form as the standard fieldlike Rashba torque, the dampinglike
Dirac torque presents a remarkable difference compared to the
SHE-induced torque and vanishes when the magnetization lies
in the plane of the surface. Furthermore, we uncover a strong
angular dependence of the torque due to (i) the distortion
of the band structure associated with the gap opening when
the magnetization lies out of plane and (ii) the presence of
anisotropic spin relaxation.

We note that a strong but opposite angular dependence of the
torque has been experimentally reported in magnetically doped
topological insulators by Fan et al. [20]: in this experiment the
magnitude of the torque is larger when the magnetization lies
perpendicular to the plane of the surface. Another difference
between Eq. (14) and the experimental observations is that
in Refs. [20,26], the SOT is dominated by the dampinglike
component, while in Eq. (14), the fieldlike torque dominates.

The charge pumping induced by a time-varying mag-
netization presents similar features as it is the Onsager
reciprocal of the SOTs. Interestingly, the pumped charge
current in turn enhances the magnetic damping of the in-plane
magnetization components. Although the magnitude of the
enhanced damping calculated in the present work is consistent
with the experimental observations [24], one cannot rule out
that other effects, such as the SHE of the TI bulk states [69],
could also contribute to the spin-charge conversion process in
these systems.

In conclusion, while the standard theory of magnetic
TI surfaces derived in the present work can account for
some of the features observed experimentally, some major
discrepancies (in particular the angular dependence and the
magnitude of the damping torque) cannot be explained. These
limitations suggest that the coupling between the magnetic
material and the TI surface [29,49], as well as the contribution
of bulk states [69], should be taken into account to model the
experiments.
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APPENDIX: INTEGRATION OF δSII WHEN εF > �

In this appendix, we further clarify the significance of the
Fermi-sea contribution to the nonequilibrium spin density δSII

given by Eq. (9). Let us demonstrate that this contribution
vanishes in the metallic regime. Such a demonstration was
carried out by Sinitsyn et al. [52] for the anomalous Hall
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effect, and we now explicitly extend it to the nonequilibrium
spin density. We can notice straightaway that δSII is, by
construction, even in scattering time 1/τ [Eq. (9) involves
only terms like ∼ĜR

ε ĜR
ε and ∼ĜA

ε ĜA
ε ]. Therefore, in the limit

of long relaxation time, δSII ≈ δSII
int + O(1/τ 2), where δSII

int
is the intrinsic contribution in the absence of disorder. The
higher-order contributions lie beyond the scope of our study
since we search only for terms ∼τ and ∼1 + O(1/τ ) [see
Eq. (13)]. Hence, our aim is to demonstrate that the intrinsic
contribution, δSII

int, vanishes.
The strategy is to write down Eq. (9) in the chiral basis

{|uk
+〉,|uk

−〉} given in Eq. (6). In this basis, the retarded

(advanced) Green’s function reads ĜR(A)
ε = ∑

s

|uk
s 〉〈uk

s |
ε−εs

k±i0+ . Let
us now decompose the energy integral into positive and

negative energy regions:

δSII−
int = h̄

2π
Re

∫ 0

−∞
dεf (ε)tr{· · · }, (A1)

δSII+
int = h̄

2π
Re

∫ +∞

0
dεf (ε)tr{· · · }. (A2)

In the different regions, the unperturbed Green’s function reads

Ĝ
R(A)
ε<0 = |uk

+〉〈uk
+|

ε − ε+
k

+ |uk
−〉〈uk

−|
ε − ε−

k ± i0+ , (A3)

Ĝ
R(A)
ε>0 = |uk

+〉〈uk
+|

ε − ε+
k ± i0+ + |uk

−〉〈uk
−|

ε − ε−
k

. (A4)

Then, Eqs. (A1) and (A2) can be rewritten as

δSII−
int = h̄

2π
Re

∫ 0

−∞
dεf (ε)

∫
d2k

(2π )2
F+−

k

[
1

ε − ε−
k + i0

∂ε

1

ε − ε+
k

− ∂ε

1

ε − ε−
k + i0

1

ε − ε+
k

]
, (A5)

δSII+
int = h̄

2π
Re

∫ +∞

0
dεf (ε)

∫
d2k

(2π )2
F+−

k

[
1

ε − ε−
k

∂ε

1

ε − ε+
k + i0

− ∂ε

1

ε − ε−
k

1

ε − ε+
k + i0

]
, (A6)

where F+−
k = 〈u+

k |σ̂ |u−
k 〉〈u−

k |(v̂ · eE)|u+
k 〉. Let us now transform Eqs. (A5) and (A6) so that the δ functions appear explicitly.

The second part of Eq. (A5), ∼∂ε
1

ε−ε−
k +i0

, can be manipulated by performing integration by part. This way, the energy derivative

is distributed over 1/(ε − ε+
k ) and f (ε). Since f (ε) is constant in the range ] − ∞,0], the contribution ∼∂εf (ε) vanishes. We

perform the same integration by part on the term ∼∂ε
1

ε−ε+
k +i0

in Eq. (A6), but now ∂εf (ε) does not vanish at the Fermi energy.
Overall, we obtain

δSII−
int = −h̄Im

∫
d2k

(2π )2

F+−
k

(ε+
k − ε−

k )2
, (A7)

δSII+(a)
int = −h̄Im

∫
d2k

(2π )2
f (ε+

k )
F+−

k

(ε+
k − ε−

k )2
, (A8)

δSII+(b)
int = − h̄

2
Im

∫
d2k

(2π )2
F+−

k
δ(εF − ε+

k )

εF − ε−
k

. (A9)

In Eq. (A7), the integration over k lies in the range [0,+∞[, while in Eq. (A8) it runs over [0,kF], where kF is the solution of

ε+
k = εF and depends on the angle φk . Therefore, one can rewrite these expressions explicitly as

δSII−
int = h̄v

2

∫ 2π

0

∫ +∞

0

dφkkdk

(2π )2

1

ε3
k

{�[cos θeE − (m · eE)z] + h̄v[(z × k) · eE]z}, (A10)

δSII+(a)
int = −δSII−

int + h̄v

2

∫ 2π

0

∫ +∞

kF

dφkkdk

(2π )2

1

ε3
k

{�[cos θeE − (m · eE)z] + h̄v[(z × k) · eE]z}, (A11)

δSII+(b)
int = h̄v

2εF

∫ 2π

0

∫ +∞

0

dφkkdk

(2π )2
{�[cos θeE − (m · eE)z] + h̄v[(z × k) · eE]z}δ(εF − ε+

k ). (A12)

Hence, it is sufficient to calculate δSII+(a)
int + δSII−

int and δSII+(b)
int . After some algebra, we get

δSII+(a)
int + δSII−

int = �

4π

1

h̄vεF
cos θeE, (A13)

δSII+(b)
int = − �

4π

1

h̄vεF
cos θeE, (A14)

and then δSII
int = δSII+(a)

int + δSII−
int + δSII+(b)

int = 0. Consequently, the Fermi-sea contribution to the nonequilibrium electrically
induced spin density vanishes in the metallic limit, within the weak-scattering regime.
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