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Nematic fluctuations balancing the zoo of phases in half-filled quantum Hall systems
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Half-filled Landau levels form a zoo of strongly correlated phases. These include non-Fermi-liquids (NFLs),
fractional quantum Hall (FQH) states, nematic phases, and FQH nematic phases. This diversity begs the following
question: what keeps the balance between the seemingly unrelated phases? The answer is elusive because the
Halperin-Lee-Read description that offers a natural departure point is inherently strongly coupled. However,
the observed nematic phases suggest that nematic fluctuations play an important role. To study this possibility,
we apply a recently formulated controlled double-expansion approach in large-N composite fermion flavors
and small ε nonanalytic bosonic action to the case with both gauge and nematic boson fluctuations. In the
vicinity of a nematic quantum critical line, we find that depending on the amount of screening of the gauge-
and nematic-mediated interactions controlled by ε’s, the renormalization-group flow points to all four mentioned
correlated phases. When pairing preempts the nematic phase, NFL behavior is possible at temperatures above the
pairing transition. We conclude by discussing measurements at low tilt angles, which could reveal the stabilization
of the FQH phase by nematic fluctuations.
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I. INTRODUCTION

The complexity of a phase diagram is a hallmark of
strongly correlated systems, and it represents the rich physics
of correlation. It also challenges theoretical progress by
making it hard for one to decide on the minimal model that
will nevertheless faithfully represent the system of interest.
Interestingly, upon a simple change of filling tuned by a
magnetic field, half-filled Landau levels switch through a zoo
of exotic states that are commonly observed among strongly
correlated materials. Specifically, the ν = 1/2 state is one
of the best established non-Fermi-liquid states [1–4], the
ν = 5/2 state is the strongest candidate for a non-Abelian
fractional quantum Hall state [5–10] with p + ip channel
pairing of composite fermions [11,12], and the ν = 9/2
state is an electronic nematic state [13–15]. More recently,
the ν = 1/2 state also attracted intense interest among the
theory community [16–18] as a possible gate into correlated
topological surface states.

Indeed, the zoo of complex phases in the quantum Hall
phase diagram has attracted many authors to view it as a
paradigmatic place to explore quantum complexity [19–27].
Nevertheless, understanding the interplay of correlated states
through a unified description remains an open question. In
particular, the question of the mechanism of pairing in the
fractional quantum Hall state remains open despite intense
efforts and interest in the community [28]. The clearest
indication about pairing comes from numerical studies of
interacting electrons in the ν = 5/2 ground state [29–31].
Unfortunately, a theoretical understanding remains elusive,
since fluctuations of the internal gauge field prevent the p + ip

pairing of composite fermions in the half-filled Landau-level
systems [1,32–35].

Nematic fluctuations provide a clue to the question of
pairing. Phenomenologically, not only does the FQH ν = 5/2
state give way to a nematic state with the gap closing under an
in-plane field [14,36,37], it also exhibits transport anisotropy
before the gap closes [19,38,39]. In particular, a recent

observation of the transition between the FQH ν = 5/2 state
and a nematic induced by isotropic pressure [40] is a striking
demonstration of the proximity between the nematic state and
the FQH ν = 5/2 state. Interestingly, recently a number of
theoretical works have been establishing the idea that nematic
fluctuations can enhance pairing [41–46]. Nevertheless, little
attention has been given to the role of putative nematic
quantum critical fluctuations in forming the FQH ν = 5/2 state
to date. Here we study the role of nematic quantum critical
fluctuations in the pairing of composite fermions assuming
that a nematic quantum critical point can be accessed through
a tuning parameter such as isotropic pressure (see Fig. 1).
Moreover, as it is known that the filled Landau levels change
the effective interactions [47], we envision a measure of
dominance of nematic fluctuation to change with the changing
of the Landau level (parametrized by δ in Fig. 1). Hence we
have a schematic phase space of Fig. 1 in mind, where the
quantum critical value of pressure pc is changing with δ and
defining a quantum critical line.

Specifically, we build on the recent progress in addressing
the challenging problem of a Fermi surface coupled to massless
fluctuations through a controlled perturbative renormalization-
group (RG) double expansion [42,48], and we investigate
the instabilities in systems in which both nematic and gauge
fluctuations are present.

The rest of the paper is organized as follows: In Sec. II
we introduce the model and details of the RG procedure.
Section III considers the resulting states, pairing, and non-
Fermi-liquid behaviors at the nematic quantum critical line
(NQCL). Behavior that is removed slightly from the NQCL
is considered in Sec. IV. We close with a discussion of the
applicability of our work, and a summary of the results and
experimental predictions.

II. MODEL

To study the interplay between nematic quantum critical
fluctuations and gauge fluctuations [1] in half-filled Landau
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FIG. 1. Phase diagram in the vicinity of a quantum nematic
transition occurring at critical isotropic pressure pc(δ) (red line) as
a function of a measure δ of dominance of nematic-mediated over
gauge-mediated bare interactions. The hatched region is nematically
ordered. Along the dashed red line, the nematic transition is
preempted by a paired (composite) fermion state (orange). At ambient
pressure (p0), a non-Fermi-liquid (blue) and gapless nematic (gray
on right) are also present. A continuous pairing transition occurs on
the black line.

levels, we extend the model in Ref. [48]. As in Ref. [48],
we consider N species of fermions and break up the Fermi
surface of each species into independent patches [49], i.e., we
decompose the ath composite fermion field ψa(τ,r) in two
spatial dimensions r and imaginary time τ with a = 1, . . . ,N

into patch fields, i.e.,

ψa(τ,r) =
∑
j,s

ψ
s,a
j (τ,r)eiskj r , (1)

where the j th patch pair is located at opposite Fermi momenta
skj , s = ±1 [see Fig. 2(a)], assuming an inversion-symmetric
Fermi surface. For every patch pair j , we align the x axis with
kj and define the patches by |kx | < �x , |ky | < �y . The action

FIG. 2. Model and RG scheme. (a) Patch pair j , with correspond-
ing Fermi momenta ±kj . (b) One-loop diagrams contributing to the
flow of coupling constants, with a fermion propagator (full line), a
nematic propagator (dashed), a gauge field propagator (dotted), and
four-fermion interaction (dot).

for the patch fermions is then given by

S
f

j =
∑
k,s,a

ψ̄
s,a
j (k)Ds(k)ψs,a

j (k), (2)

where Ds(k) ≡ −iωk + vF (skx + 1
2K

k2
y) and vF is the Fermi

velocity, K is the local Fermi surface curvature, and k ≡
(ωf ,kx,ky) represent the fermionic Matsubara frequency ωf

and the patch momenta, while the normalized sum is
∑

k ≡
1
β

∑
ωf

∫
d2k

(2π)2 .
Reference [48] considered fermions coupled to a single

boson, controlling the RG expansion using two small parame-
ters: 1/N and the deviation [50] of the boson’s dynamic critical
exponent from 2. For composite fermions coupled to nematic
quantum critical fluctuations, our fermions on the patch pair
j will be each coupled to two bosonic fields: the massless
transverse component (in the direction of Fermi momentum,
see Appendix A) of the gauge field [49], φg(τ,r), and the
nematic fluctuation, φη(τ,r), which is massless at the NQCL.
We then follow Ref. [42] and break the nematic and gauge
fields into separate patch fields [41,49] φj,η(τ,r) and φj,g(τ,r).
The bosonic action is then

Sb
j = 1

2κ2
η

∑
q

|qy |1+εη |φj,η(q)|2 + r0

2

∑
q

|φj,η(q)|2

+ 1

2κ2
g

∑
q

|qy |1+εg |φj,g(q)|2 + · · · (3)

with q ≡ (ωb,qx,qy) the bosonic Matsubara frequency and
momentum variables, the bare mass r0 measures the distance
to the NQCL from either side of the transition, and “· · · ”
represent all other irrelevant analytic terms that we will ignore.
Here κη and κg , the boson couplings for the nematic and
gauge boson, respectively, get renormalized under RG [see
Fig. 2(b)]. We retain control of the calculation for small enough
nematic mass (see Appendix F), in a regime of strong fermion-
nematic coupling that is complementary to the one accessed
by Ref. [43]. The deviation of each boson’s dynamic critical
exponents from 2 represented by εη < 1 for the nematic fluc-
tuation and εg < 1 for the gauge boson will control two double
expansions together with 1/N . Due to the nonanalyticities in
the action, these will not renormalize under RG [48]. Further,
we will treat εη and εg as phenomenological parameters rather
than view any particular value as “physical.” When coupled to
fermions, these bosons mediate interaction between fermions.
As filled Landau levels change the effective interaction
between composite fermions [51], in effect we anticipate the
bare values of εη and εg to vary with the number of filled
Landau levels and other external controls such as pressure.

All together, the full effective action Sj for each patch pair
j is

Sj = S
f

j + Sb
j + S int

j , (4)

where S int
j represents the coupling between bosons and

fermions,

S int
j = uη√

N

∑
k,q

φj,η(q)
∑
s,a

ψ̄
s,a
j (k + q)ψs,a

j (k)

+ ug√
N

∑
k,q

φj,g(q)
∑
s,a

sψ̄
s,a
j (k + q)ψs,a

j (k), (5)
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with coupling constants uη and ug for the nematic-fermion and
gauge-fermion interaction, respectively, being renormalized
under the RG [Fig. 2(b)]. Note the difference in the sign of
the coupling [33]: the nematic field couples to the density,
and hence the coupling is independent of the patch label.
Contrastingly, the gauge field couples to the current and hence
the coupling has opposite signs on the two patches s = ±1.

Finally, our main goal is to investigate how the two critical
couplings affect pairing of the composite fermions leading
to the ν = 5/2 state. For this we analyze fermion pairing
instabilities by considering the residual composite fermion
interaction in the BCS channel,

SBCS = −1

4

∑
k,k′,a

V αβγ δ(k − k′)ψ̄a
α (k)ψ̄a

β (−k)ψa
γ (k′)ψa

δ (−k′),

(6)
where we explicate spin indices, and we use that in a
rotationally invariant system (true near enough to the NQCL)
the interaction depends only on the angle of q = k − k′ with
momenta k and k′ taken on the Fermi surface. We consider
the SBCS term without expanding in patch fermion species for
efficiency. Interpatch interactions it contains get renormalized
when high-momentum bosons are integrated out, and this form
enables us to ignore the details of the patching procedure
[Fig. 2(b) and Ref. [42]].

III. RG FLOW AND PHASE DIAGRAM ON THE NQCL

Within the perturbative RG approach, we consider the
NQCL Gaussian theory and the free-fermion fixed point,
working in the zero-temperature limit at the NQCL. The
scaling that preserves the functional form of the fermionic
propagator [Eq. (2)] is

kx → tkx, ky → t1/2ky, ω → tω, (7)

with t = e−l , and l being the RG scale. We set the same scalings
for bosonic variables. To define the fermionic and bosonic
modes to be integrated out, for every patch pair located at ±kj

we align the x axis with kj , fixing the patches as |kx | < �x ,
|ky | < �y , and then we choose the high-energy fermion modes
at t�x < |kx | < �x and bosonic ones at

√
t�y < |qy | < �y .

The fermionic modes at
√

t�y < |ky | < �y cross the Fermi
surface and cannot be integrated out, so to preserve the patch
aspect ratio with each RG step we relegate these modes to new
patches.

The above RG method introduced in Ref. [42] is a hybrid
between a two-patch scheme that focuses on interactions
within a patch, and a multipatch scheme that focuses on
interpatch interactions. It merges the two schemes by being
agnostic about how new patches are introduced at each RG
step. As such, the method does not track information about the
geometry of the Fermi surface. Although recent findings on the
importance of Fermi surface geometry were limited to Fermi
surfaces in higher dimensions [52], the lack of a systematic
scheme for introducing new patches may still harbor problems.
Nevertheless, we proceed here assuming that there exists at
least one well-defined way to introduce new patches at each
RG step.

The total action in Eq. (4) has two dimensionless couplings
at the NQCL: a fermion-gauge coupling constant and a

fermion-nematic coupling constant, i.e.,

g = u2
gκ

2
g

(2π )2vF �
εg

y

, η = u2
ηκ

2
η

(2π )2vF �
εη

y

, (8)

respectively. Both couplings are relevant at our initial fixed
point (Gaussian nematic and free fermion). For the BCS
instability, the coupling constants in Eq. (6), V αβγ δ(k − k′),
in all spin-symmetric or spin-antisymmetric channels with
fixed angular momentum are rendered indistinguishable within
one-loop RG and hence may be labeled by a single constant
V . The corresponding dimensionless coupling constant is

v = kF

2πvF

V, (9)

where v < 0 (v > 0) is attraction (repulsion).
One-loop quantum corrections in our RG [see Fig. 2(b)]

give the following flow equations for the Cooper pairing:

dv(l)

dl
= −v(l)2 − f (l), f (l) ≡ η(l) − g(l), (10)

where we introduced the running coupling f (l) to keep track
of the competition between nematic and gauge fluctuations.
Positive f promotes attraction in the BCS channel, and
negative f suppresses it. Interestingly, within our theory not
only can f (l) have either sign but its sign can change during
the RG flow. The remaining couplings flow as

ġ = g
(εg

2
− η

N
− g

N

)
, η̇ = η

(εη

2
− η

N
− g

N

)
,

v̇F = −vF

( η

N
+ g

N

)
, (11)

where an explicit l dependence is dropped. The last equation
shows that coupling to both of the bosons enhances the
tendency toward a non-Fermi-liquid state, which is charac-
terized by a vanishing Fermi velocity vF . Note that the local
four-fermion interactions (in any particle-hole channel as well
as in the BCS channel) do not influence the flow of boson-
fermion couplings at the one-loop level. This is because all
pertinent diagrams vanish due to the vanishing of the fermion
polarization bubble. Such vanishing of the polarization bubble
was already reported in Ref. [48]. One can also understand this
absence of a “backreaction” by considering the four-fermion
term induced by a boson-fermion coupling (5) when the boson
is integrated out. The induced four-fermion term has a factor
∼ 1/|k|1+ε coming from the boson propagator, making it more
relevant than a corresponding local interaction term.

The two RG equations for the fermion-boson couplings g,η

in Eq. (11) do not involve other couplings, so we start from
the g,η plane in which there are obvious fixed points: Beside
the unstable free point (g,η) = (0,0), there are (g,η) = (g∗,0)
and (g,η) = (0,η∗), where the defined numbers

g∗ ≡ Nεg

2 , η∗ ≡ Nεη

2 (12)

can take finite values in the double expansion εg,εη → 0,
N → ∞. As the existence of fixed points is established,
for simplicity in the following we set N = 1 and consider
the g∗,η∗ 	 1 limit. In our approach, different experimental
circumstances correspond to different bare values of running
couplings η0 and g0, as well as to the balance between η∗ and g∗
(i.e., εη and εg , respectively). Since we take the physical value
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FIG. 3. RG flows at the NQCL projected onto planes in space of fermion-gauge (g), fermion-nematic (η), and pairing interaction (v)
couplings. Fixed points, stable (large dot), or unstable (small dot) in the plane are marked. (a,b) In the orange region, the (composite) fermions
pair with vanishing bare attraction, i.e., a gapped FQH is formed. (a) The value g∗/η∗ = 0.7 is representative for all εg < εη. In the dotted
orange area, the NFL energy scale is higher than the pairing gap scale. (b) The choice g∗/η∗ = 1.44 is representative for all εg > εη. The (g∗,0)
point is isotropic NFL (blue). At the boundary between the regions, the pairing energy scale becomes zero. This phase diagram is robust away
from the nematic quantum critical line (see Fig. 8). (c) Pairing instability for initial repulsion (v > 0) or attraction (v < 0), with g∗/η∗ = 1.44
as in (b) and the choice η0 = 0.67η∗. The stable NFL fixed point (g,η,v) = (g∗,0,v∗) is given by v∗ = √

g∗ = 0.8 [see Eq. (C3)]. Flows starting
in the orange region show pairing instability since v → −∞ at a finite RG scale.

of bare pairing to be v0 = 0, the pairing instabilities as well
as the non-Fermi-liquid behavior are then fully determined
by the values of η0,g0,η∗,g∗. The fine-tuned case εg = εη is
exceptional, and it exhibits a line of fixed points connecting
the two fixed points (g∗,0) and (0,η∗) at the one-loop level
(see Appendix B). As the RG flows of (g,η) and especially of
the pairing coupling constant v qualitatively differ depending
on which one of the εg,εη is larger, we analyze the two
cases separately. For each case, we infer the possible phases
assuming that the bare values of the fermion-boson couplings
(g0,η0) represent different experimental circumstances.

In the case εg < εη with the dynamic critical exponent
of the nematic boson being larger, the only stable fixed
point in the (g,η) plane is (g,η) = (0,η∗) [see Fig. 3(a)].
Obviously, the fermions always pair (except when η0 = 0
exactly), because f (l) [see Eq. (10)] here flows from the
value η0 − g0 to η∗ > 0. Therefore, eventually f (l) turns
positive and stays that way, giving a pairing instability even
with v0 = 0 to realize a gapped FQH state. A remarkable
consequence of this result is that the paired state is realized
even in the limit in which the bare coupling of the fermions
to the gauge fluctuations dominates over the bare coupling
to the nematic fluctuations. Gauge fluctuations are no longer
impeding pairing enough to push it to require a finite attractive
interaction. Instead they only suppress the value of the pairing
(FQH) gap estimated as �P ∼ exp (−lP ) when a pairing
instability v = −∞ develops at a finite RG scale lP . In
the most extreme case of g0 → ∞,η0 → 0, we obtained an
analytic expression for the suppressed pairing gap in the limit
η∗ − g∗ 	 g∗ to be (see Appendix C)

�P ∼
(

η0

g0

)1/(η∗−g∗)

exp(−π/
√

η∗). (13)

Although the NFL dictated by vanishing Fermi velocity in
Eq. (11) is unstable to infinitesimal pairing in the entire phase
space of (g0,η0) in this case, the NFL effects may be visible
at temperatures above pairing Tc. This requires the energy
scale associated with the NFL to be larger than the pairing gap

scale, which occurs in the dotted region of Fig. 3(a) dictated
by sufficiently large (g0 + η0) (see Appendix E).

In the case εg > εη with the dynamic critical exponent of the
gauge boson being larger, there is a richer set of possibilities
[see Fig. 3(b)]. Namely, depending on the two bare boson-
fermion coupling strengths, we find either a stable non-Fermi-
liquid [blue region in Fig. 3(b)] or a paired state [orange in
Fig. 3(b)]. Moreover, we find that the two phases in the (g0,η0)
plane are separated by a continuous phase transition at the
phase boundary given by

(η0 − g0) ln

(
η0

g0

)
= (g∗ − η∗)

√
g∗ (14)

for g∗ − η∗ 	 g∗. Although the phase boundary in Fig. 3(b)
needs to be obtained numerically in general (see Appendix D),
a simple intuition can be gleaned from the β function in
Eq. (10). When g0 > η0, the function f (l) stays negative
throughout the RG flow and pairing requires above-threshold
strength of the attractive bare interaction. Therefore, the fixed
point (g∗,0) controls the blue region of Fig. 3(b). As Eq. (11)
dictates, the Fermi velocity vF flows to zero in this region,
resulting in a NFL phase driven by gauge fluctuations as in
the original HLR model [1,50]. On the other hand, pairing can
occur as an infinitesimal instability for g0 	 η0 despite (g∗,0)
being the only stable fixed point. This is because f (l) starts
off positive for these bare values of couplings, and the pairing
instability can take over before f (l) eventually turns negative.
In fact, for g0 sufficiently smaller than η0, the pairing instability
occurs even if the initial coupling in the BCS channel [Eq. (9)]
is repulsive, v > 0; see Fig. 3(c). The NFL effects may be
visible again in the dotted region of the paired state [see
Fig. 3(b) and after Eq. (13)]. Furthermore, the continuity of
the transition is evident by the fact that the pairing gap of
the infinitesimal instability vanishes as (g0,η0) approaches the
phase boundary of Eq. (14) with an analytic form we find for
g∗ − η∗ 	 g∗,

�P ∼ x
1

2
√

g∗

(
g0

η0

)1/δ∗
, (15)
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where x parametrizes a small distance in (g0,η0) from the
phase boundary (see Appendix D).

Overall we established that a composite fermion system
tuned to the NQCL can be in one of two ground states: a paired
state promoted by nematic fluctuations (orange regions in
Fig. 3) or a stable NFL state governed by the gauge fluctuations
[blue region in Fig. 3(b)]. If we associate the paired CF state
with the ν = 5/2 FQH state, our model indicates that pairing
in the ν = 5/2 FQH state is driven by the nematic fluctuations.
Further associating the NFL state with the ν = 1/2 NFL state,
we are invited to postulate the influence of nematic fluctuation
to be weaker at lower Landau levels. If the degree of dominance
between the two gapless bosons is varied with experimental
conditions and the filling factor, and further the distance to
the nematic phase can be varied with an external control such
as isotropic pressure, we can now divide the NQCL into two
parts as in Fig. 1.

IV. PHASES IN THE VICINITY OF THE NQCL

Because accessing the quantum NQCL would require fine
tuning, we now consider the effect of finite distance from the
NQCL with finite r0 in Eq. (3). The positive mass r0 > 0 will
leave the system in the isotropic phase. But negative mass r0 <

0 will drive the system into a nematic phase where the nematic
order parameter gains a finite expectation value. However,
the analysis of the fluctuation around this expectation value
will closely follow the analysis of the nematic fluctuation in
the isotropic phase. From hereon we refer to the dimensionless
coupling associated with the quadratic term in the action for the
nematic fluctuation as R, which is always relevant. Moreover,
a runaway flow of the nematic-fermion coupling η takes the
system to a strong-coupling regime outside the applicability
of our methods when εg < εη. Nevertheless, we can study
the regime near the NQCL by cutting the RG flows when R

reaches some limiting value.
The nematic mass generally weakens the influence of

nematic fluctuations, and the RG equations now become

f (l) ≡ η(l)

1 + R(l)
− g(l) (16)

and

ġ = g

(
εg

2
− η

N

1

1 + R
− g

N

)
,

η̇ = η

(
εη

2
− η

N

1

1 + R
− g

N

)
,

v̇F = −vF

(
η

N

1

1 + R
+ g

N

)
. (17)

Again we can establish a phase boundary between a paired state
and a NFL state in the (η0,g0) phase diagram (see Appendix F).
In the region of bare couplings where η0 is sufficiently larger
than g0, the f (l) starts out positive. If pairing instability takes
over before R(l) grows substantially, the system will end up
in a paired state. On the other hand, when η0 	 g0, f (l) starts
off negative and ultimately the rapid growth of R ensures
f (l) → −g∗ as l → ∞ leaving the system controlled by the
gauge fluctuation without pairing. Now depending on the sign
of r0, the paired state and the NFL state each may be isotropic

FIG. 4. Phases realized for different bare fermion-gauge (g0) and
fermion-nematic (η0) couplings when the system is in the vicinity
of the nematic quantum transition. (a) In the disordered phase with
positive nematic mass r0 > 0, either a NFL (blue) or a paired state
(orange). (b) In the nematically ordered phase with negative nematic
mass r0 < 0, either an anisotropic NFL (shaded blue) or a gapped
paired nematic state (shaded orange).

or nematic. Hence one can anticipate phase diagrams in Fig. 4
with four distinct phases: isotropic paired CF, isotropic NFL
[Fig. 4(a)], nematic paired CF, and nematic NFL [Fig. 4(b)].
Indeed, a systematic study of RG flows conforms to this
anticipation (see Appendix F). Hence within the regime of
validity of our approaches, we see that the observation of a
nematic fluctuation driven pairing phase and a stable NFL
phase we obtained at the NQCL survives moving away from
the NQCL line. The new facets introduced by considering the
nematically ordered phase are the possibilities of having an
anisotropic paired state and anisotropic NFL state (see Fig. 1).

V. DISCUSSION AND CONCLUSIONS

To summarize, we used double expansion [48] in boson
dynamic exponents [50] and number of fermion species [49]
to study the NQCL and its vicinity in composite Fermi fluid.
This approach has several issues, including the fact that it relies
on nonanalytic bosonic actions and an incompletely specified
RG prescription. Nevertheless, we found the interplay between
gauge fluctuations and nematic fluctuations to account for the
entire zoo of correlated states observed in half-filled Landau
levels. To start with, we capture the NFL state at ν = 1/2,
the FQH state at ν = 5/2 (paired CF state), and the gapless
nematic state at ν = 9/2. Moreover, the gapped FQH nematic
observed in a tilted field experiment [39] naturally appears
on the nematic ordered side of the NQCL with the pairing
driven by nematic fluctuation. Finally, a recent observation of
the transition between a FQH state and a nematic state driven
by isotropic pressure suggests that the NQCL we envision in
Fig. 1 can be accessed using pressure [40].

There are several other intriguing correlated states that we
left out in this study. It is plausible that striped states, such
as a recently proposed particle-hole symmetric liquid [53],
could be described by a 2kF instability of an extended
theory. However, such an instability in a two-patch theory
is likely to be dominated by the pairing instability without
nesting [48]. Another interesting question concerns the com-
petition between a Moore-Read Pfaffian state [11,12] and its
particle-hole-conjugate anti-Pfaffian state [54], with each of
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these conjectured states corresponding to different pairing
symmetry channels of CFs. Unfortunately with our minimal
number of patches, we cannot distinguish different pairing
channels. Nevertheless, an extension of our work, including
a larger number of patches, may be useful in studying the
competition between Pfaffian and anti-Pfaffian states, and it
may even include a striped Pfaffian–anti-Pfaffian phase [55].

The key insight that emerges from our result is that the
pairing of CFs in ν = 5/2 systems can be driven by nematic
fluctuations in the vicinity of the NQCL. Therefore, we predict
the magnitude of the FQH gap in ν = 5/2 to be correlated with
the nematic fluctuations, which can be quantified through mea-
suring nematic susceptibility. To achieve this, one possibility
is to measure the nematic susceptibility in ν = 5/2 states by
studying nematicity as a function of small tilt-angles. Then
our results predict the nematic susceptibility so-measured to
be monotonically correlated with the size of the FQH gap at
zero tilt-angle.
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APPENDIX A: FROM THE HLR GAUGE FIELD
TO A SCALAR FIELD

We briefly review the HLR model [1] and how it leads to
the action for the gauge field in Eq. (3) and its coupling to
fermions in Eq. (5). The central insight of HLR is to attach
two flux quanta of a U(1) gauge field 
a to each electron, which
creates a composite fermion (CF) denoted by the field ψ(
r),
as expressed by the constraint


∇ × 
a(
r) = 2(2π )ψ†(
r)ψ(
r), (A1)

where the CF density on the right-hand side equals the original
electron density. An HLR action with τ denoting the imaginary
time therefore contains a Chern-Simons term for the gauge
field aμ = (iaτ ,
a), which provides the flux attachment, as is
obvious when the aτ component is integrated out to recover
Eq. (A1):

SCF+gauge =
∫

dτ d2 
x ψ†[∂τ − iaτ + E(−i 
∇ + e 
A − 
a)]ψ,

(A2)

SCS =
∫

dτ d2 
x 1

2(4π )
εμνλaμ∂νaλ, (A3)

where 
A is the electromagnetic potential and E(
k) is the
electron dispersion. In half-filled Landau levels, the attached
aμ gauge flux in the mean-field approximation exactly cancels
the external magnetic flux leaving the CF free, however both
the fluctuations of aμ and the interactions between the CF

particles cannot be ignored, and it is advantageous to treat them
together. The interaction between CF particles is effective and
therefore considered to have a varying range,

SCF int =
∫

dτ d2 
x d2 
y U

|
x − 
y|1+ε

×ψ†(τ,
x)ψ(τ,
x)ψ†(τ,
y)ψ(τ,
y), (A4)

from Coulomb for ε = 0 to short-range as ε → 1, giving
the full HLR action SHLR = SCF+gauge + SCS + SCF int. The CF
density in the quartic term SCF int allows one to rewrite it
exactly as a purely gauge field quadratic term using the
constraint Eq. (A1), which also implies that only the transverse
component of the gauge field aT (τ,
k) ≡ (ẑ × k̂) · 
a(τ,
k) at
momentum 
k appears:

S ′
CF int =

∫
dτ d2
k U

|
k|1−ε

1

(4π )2
|
k|2aT (τ,
k)aT (τ, − 
k),

(A5)

where we dropped an ε-dependent normalization to obtain the
term in our action Eq. (3), where aT is relabeled to φj,g after
restriction of its momenta determined by patch-pair j [below
Eq. (7)]. Through the transformation from SCF int to S ′

CF int,
it was recognized that a non-Fermi-liquid fixed point can be
accessed in a perturbative expansion of ε [50].

The CFs couple strongly to the transverse gauge component
aT due to the scaling transformation [Eq. (7)], which is chosen
to preserve the Fermi surface at patch-pairs j as they scale
toward the Fermi point ±
kF,j = ±kF x̂j [49]. Since for a
circular Fermi surface the CF current in patch j gets directed
along the x axis, the expansion of the CF-gauge coupling term
SCF+gauge in Eq. (A2) has the lowest-order term in powers of

gauge field and derivatives vF axj
(ψ+

j

†
ψ+

j − ψ−
j

†
ψ−

j ) (note
that the fermion species index is suppressed). On the other
hand, the patches scale such that their aspect ratio remains
�xj

∼ �2
yj

/kF 	 �yj
[see below Eq. (7)] so that in the

RG transformation of patch-pair j the relevant high-energy
gauge modes have momenta qxj

	 qyj
. Therefore, in every

patch-pair j the gauge component that couples dominantly to
CFs is transverse, i.e., axj

with momentum qyj
.

APPENDIX B: RG DIAGRAM FOR εg = εη

In this situation, the flow equations (11) lead to flow along
rays through the origin:

η

g
= η0

g0
, (B1)

and there is a line of fixed points (g∗,η∗) satisfying

g∗ + η∗ = ε∗, (B2)

where we defined ε∗ ≡ Nεg/2 = Nεη/2.
On the NQCL, the pairing function f (l) changes from

η0 − g0 to (η0 − g0) ε∗
η0+g0

, so there is an infinitesimal pairing
instability only for η0 > g0. Right at the line η0 = g0 there is
BCS behavior that is not expected to be generic beyond one
loop.

The NFL energy scale dominates over the pairing scale
inside the strip η0 − g0 	 (η0 − g0)2 in the η0 > g0 region,
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while the converse is found for η0 − g0 � (η0 − g0)2 (see
Appendix E).

APPENDIX C: PAIRING FOR εg < εη

We can find analytic approximations for the flow of pairing
in the limit of g∗ and η∗ being similar:

|δ∗| 	 g∗, where δ∗ ≡ η∗ − g∗. (C1)

This limit is generally convenient as it provides a separation of
scales in the RG flow of fermion-boson couplings: the flow of
(g,η) is near (g0,η0) for l 	 1/η∗, near the line in Eq. (B2) for
1/η∗ 	 l 	 1/|δ∗|, and near the fixed point for l � 1/|δ∗|.
The separation of scales follows from the analytic solution of
RG flow for fermion-boson couplings g,η on the NQCL:

η(l) = η0 exp(η∗l)
1 + h(l) − h(0)

, h(l) = η0

η∗
eη∗l + g0

g∗
eg∗l . (C2)

For the case g∗ < η∗, we identify several regimes for the
pairing gap scale in the region η0 < η∗. With the separation
of scales, the f (l) remains approximately constant for scales
l 	 1/η∗, and in the least favorable case for pairing, η0 	 g0,
the value is f (l) ≈ −g0. It is useful to analyze in general
the flow of pairing v [Eq. (11)] when f (l) is constant. The
outcome is strongly dependent on the sign of the constant. For
f (l) = −D2, D > 0, the flow is

vD(l) = D
vinit + D + (vinit − D) exp(−2Dl)

vinit + D − (vinit − D) exp(−2Dl)
, (C3)

with an attractive fixed point at vinit = D and a repulsive one
at vinit = −D. Only if vinit < −D is there a pairing instability

v → −∞ reached at l−D = 1
2D

ln (D+|vinit|
D−|vinit| ). Therefore, the

pairing interaction v in the beginning part of the flow (l 	
1/η∗) settles at the repulsive value v+ = +√

g0 (we assume
v0 = 0). At the scale

lT = 1

|δ∗| ln

(
g0

η0

)
, (C4)

f (l) becomes positive, and most of the ensuing flow has f (l) ≈
η∗. So here we can use the solution to the flow with f (l) being
positive and constant, and the initial condition being vinit =
v+ = +√

g0. The solution to the flow of v given f (l) = C2,
C > 0, is

vC(l) = C tan[−Cl + arctan(vinit/C)], (C5)

with pairing instability v → −∞ reached at lC+ = π
C

for
vinit � C, at lC− = 1

|vinit| for vinit 	 −C (weak-coupling BCS
case), and at lC0 = π

2C
for |vinit| 	 C. [Note that drastically

different from Eq. (C3), there is always a pairing instability.]
Applying Eq. (C5), therefore, gives for the unfavorable case
g0 � η∗ the pairing scale l′P = π/

√
η∗. The total pairing scale

is then lT + l′P , leading to Eq. (13).
To estimate the pairing scale when the gauge-fermion bare

coupling diminishes, for example when (g0,η0) is close to the
unstable fixed point (g∗,0), we solve a differential equation
obtained in various approximations to the flow equation of v

[Eq. (11)]. Let us consider the function f of the form

f (l) ≡ a exp(kl) − b, (C6)

with a,b,k positive constants. With the substitutions ¯v(l) =
v(l)/k, ¯f (l) = (1/k2)[f (l) + b], we obtain the flow equation

f̄
dv̄

df̄
= −(v̄2 + f̄ − b/k2). (C7)

The solution takes the functional form v̄ = h(f̄ ,b/k2,C), with

h(x,y,c) ≡
√

x

2

C�(1 − 2
√

y)[J−2
√

y−1(2
√

x) − J1−2
√

y(2
√

x)] + �(2
√

y + 1)(J2
√

y−1(2
√

x) − J2
√

y+1(2
√

x))

C�(1 − 2
√

y)J−2
√

y(2
√

x) + �(2
√

y + 1)J2
√

y(2
√

x)
. (C8)

The integration constant C is fixed by initial conditions v(0) =
0, f̄ (0) = a, giving h(a/k2,b/k2,C) ≡ 0, which is easily
solved to obtain the parameter-dependent value C(a/k2,b/k2).
Labeling the denominator of h in Eq. (C8) by χ , the pairing
instability v → −∞ occurs at scale lP when χ ≡ 0, which
gives the implicit equation

χ

(
a

k2
eklP ,

b

k2
,C

(
a

k2
,
b

k2

))
= 0. (C9)

We write lP in the form

lP ≡ 1

k
ln

(
k2

a
zP

)
, (C10)

where zP depends in principle on a,b,k. This corresponds to
saying that f̄ (lP ) � 1.

We numerically find that zP itself depends very weakly on
the parameters and is practically constant of order 1 up to
a/k2,b/k2 � 0.1 (see Fig. 5).

Returning to the physical problem of intermediate and weak
bare fermion-gauge coupling, which is still much stronger than
bare fermion-nematic coupling, on the NQCL the function
f (l) can in general be rewritten to emphasize the dependence
on δ∗:

f (l) =
η0

g∗
g0

exp(δ∗l) − g∗
1 + X exp(−g∗l) + g∗η0

g0η∗
exp(δ∗l)

,

X ≡ g∗
g0

(
1 − η0

η∗
− g0

g∗

)
, (C11)

where X measures the distance from the line connecting the
fixed points [see Eq. (B2)]. The flow of v becomes analytically
tractable when f reduces to the form in Eq. (C6). We can
therefore consider the example case of (g0,η0) close to the
unstable fixed point (g∗,0) by its behavior on the line X = 0.
Here the denominator of f is approximately 1 on scales l 	
lv ≡ (1/δ∗) ln(η∗/η0 − 1). Using X = 0 to eliminate g∗/g0,
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FIG. 5. Pairing the scale factor zP [Eq. (C10)] dependence on the
parameters a/k2 and b/k2 [Eq. (C6)]. The curves from bottom to top
are for a/k2 = 10−6,10−5, . . . ,10−1.

we have the tractable form f (l) ≈ η0

1−η0/η∗
exp(δ∗l) − g∗. The

consistency condition lP 	 lv reduces to η0/η∗ 	 1. Using
this, the result lP = (1/δ∗) ln(δ∗2/η0) follows from Eq. (C10)
and the pairing gap is

�P ∼
(

η0

δ∗2

)1/δ∗
. (C12)

Next we consider an even weaker gauge-fermion bare cou-
pling g0, more precisely the regime η0

η∗
− g0

g∗
	 1, further

assuming that lP 	 1/δ∗, which makes the numerator of
f (l) constant and the X term in the denominator dominant
[see Eq. (C11)]. The result lP = (1/g∗) ln[g∗2/(η0 − g0)]
follows, under the constraint η0 > g0 and lP 	 1/δ∗. The
latter condition can be rewritten as η0/η∗ + g0/g∗ 	 1 and
η0 − g0 � g∗2 exp(−g∗/δ∗), while the gap becomes a stronger
power law:

�P ∼
(

η0 − g0

η∗2

)1/η∗
. (C13)

Finally, we note that setting g∗ 	 η∗, i.e., considering a
phase diagram far from the case in Eq. (C1), one expects the re-
sults to reduce to the ones in Ref. [42] having fermion-nematic
coupling only. In the η0 	 η∗ region of the phase diagram, this
is indeed true. Taking η0 	 η∗ in three regimes g0 	 g∗ 	 η∗,
g0 = g∗ 	 η∗, and g∗ 	 g0 	 η∗, we find that

f (l) ≈ η0 exp(η∗l) − g0, (C14)

which leads to the result lP = (1/η∗) ln[(η∗2/η0)], due to
zP ≈ 1 [see (C10)].

APPENDIX D: PAIRING TRANSITION LINE FOR εg > εη

To derive the expression for the pairing transition line in
the plane of boson-fermion couplings, we focus on the region
η0 > g0. Assuming the separation of scales [see Eq. (C1)], we
can approximately replace the f (l) by the positive constant
η0 − g0 in the first part of the flow, and the negative constant
−g∗ in the second part of the flow. The vanishing pairing gap
at the transition line implies that the pairing scale found in the
second part of flow is l′P → ∞, which is a condition we use

to connect the solutions in the two parts of the flow. The f (l)
becomes negative at

lT = 1

|δ∗| ln

(
η0

g0

)
, (D1)

and once it does it quickly approaches the constant value f =
−g∗. We can use this in the solution of Eq. (C3) for the second
part of the flow, except that the initial condition vinit, being the
value of v when the flow entered the regime f ≈ −g∗, is still
unknown. Our demand that l′P → ∞ occurs if vinit is just below
−√

g∗ [see Eq. (C3)]. So we can set vinit ≡ −√
g∗, and we use

this as a condition for the first part of the flow. The vinit can be
estimated as the value v(lT ), while the latter can be estimated
by using the first part of the flow, where f ≈ η0 − g0 ≡ C2.
Using Eq. (C5), therefore, gives the implicit equation that
corresponds to the vanishing pairing gap:

vC(lT ) ≡ −√
g∗. (D2)

Assuming ClT 	 1, the tangent can be approximated and
Eq. (D2) gives Eq. (14) of the main text, which is consistent
with ClT 	 1 as long as g0,η0 are not orders of magnitude
larger than the values of g∗,η∗.

We tested the prediction in Eq. (14) by numerically solving
the flow; see Fig. 6(a). There is good agreement in the
considered regime |δ∗| 	 g∗, g0,η0 	 g∗, however we note
that there is excellent agreement with the line

√
η0 − g0 ln

(
η0

g0

)
= π |δ∗|/2 (D3)

in a wider parameter range. This is a noteworthy property
of the numerical experiment: it is challenging to numerically
observe a divergence v(l) → −∞ at large values of l ≡ lP .
Deep in the considered regime |δ∗| 	 g∗, g0,η0 	 g∗ we could
identify flows where v upon entering into the second part of
the flow [see before Eq. (D1)] hovers at a fixed negative value
for long stretches of l before diverging. This is precisely the
expected behavior in the approximation of f (l) being constant
in two parts of the flow, in which case v in the second part
starts out just below its unstable fixed point −√

g∗. However,
with a given numerical precision and a wider range of initial
conditions, it becomes hard to tune g0,η0 such that this second
part of the flow of v is realized. Instead, one easily identifies the
values g0,η0 for which v(l) develops a divergence at a relatively
small l ≡ lP while f (l) is still not too negative and therefore l

is close to the value lT where f (l) changes sign. That kind of
numerical identification of the transition point corresponds to
equating lP with lT . Identifying lP = π/(2

√
η0 − g0), which

is a particularly good approximation for slower flows when
η0,g0 are comparable to η∗,g∗, the quoted expression Eq. (D3)
follows directly. Of course, lT is finite so the condition lP = lT
in principle does not allow lP → ∞ and �P → 0. However,
the similarity of curves in Fig. 6(a) shows that the error in our
numerical identification of lP is small.

The pairing energy scale in the main text is determined
using the total pairing scale lT + l′P .

APPENDIX E: FLOW OF FERMI VELOCITY

The Fermi velocity flows to zero for any nonzero bare
fermion-boson couplings [see Eq. (11)], but it does so in
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FIG. 6. Line of continuous transition to the paired state in the plane of bare couplings (g0,η0) for εg > εη. (a) On the NQCL, with
g∗ = 1.3,η∗ = 0.9. Blue dots are obtained from numerical solutions to RG flow by having the v(l) coupling diverge near the largest available
scale l. The boundary of the blue shading is the approximate expression Eq. (D3), and the upper boundary of the red shading is Eq. (14);
see the discussion in Appendix D. Inset: zoom-in at small bare couplings. (b) Away from the NQCL, R0 = 0.05, and g∗ = 1.3,η∗ = 0.8. Red
dots are obtained from numerical solutions to RG flow by having the v(l) coupling diverge near the largest available scale l. The red line is
obtained by equating l′T [the scale at which the pairing function f (l) starts repressing the pairing tendency], obtained numerically from Eq. (F3),
to the approximation lP = π/(2

√
η0 − g0) (see the discussion in Appendix D). The boundary of the blue and yellow shadings uses the two

approximate expressions for l′T in Eq. (F4), respectively. Note that blue corresponds to lT with R0 = 0, while yellow matches the slope near
the origin better.

different ways depending on the bare couplings (g0,η0).
We seek to identify two opposite regimes: (i) the “NFL-
dominated” regime where the typical NFL energy scale is
much larger than the pairing gap energy, and (ii) the “pairing-
dominated” regime where the converse is true. The former case
indicates [42] that NFL behavior is observable at temperatures
above the pairing (FQH) critical temperature. The typical NFL
energy scale can be estimated as E ∼ exp(−lF ) with lF the RG
scale at which the Fermi velocity decays. In general, the flow
of vF [Eq. (11)] is given by vF /vF0 = exp[−IF (l)], where we
define

IF (l) ≡
∫ l

0
[g(x) + η(x)]dx, IF (lF ) ≡ 1, (E1)

so that non-Fermi-liquid effects become appreciable depend-
ing on the RG scale lF .

In special case g∗ = η∗ ≡ ε∗, on the NQCL, the exact
solution is

lF = 1

ε∗
ln

(
1 + ε∗(e − 1)

g0 + η0

)
. (E2)

On the line of fixed points, the exact solution for the scale
of pairing (which only happens for η0 > g0) is lP = π

2
√

η0−g0
.

Given that ε∗ 	 1, the NFL-dominated regime appears close to
the pairing transition at η0 = g0, i.e., for η0 − g0 	 ε∗2, since
lP � lF and both are � 1. Conversely, the pairing-dominated
regime holds for η0 − g0 � ε∗2, where nematic coupling is
much stronger than gauge coupling.

This analytic argument can be extended to stronger cou-
plings, g0 + η0 � ε∗, where lP ≈ π

2
√

η0−g0
, and the NFL-

dominated regime is found for η0 − g0 � (g0 + η0)2, while
the pairing-dominated regime is found for η0−g0	(g0+η0)2.

In the more general case δ∗ = η∗ − g∗ �= 0 on the NQCL
we get qualitatively the same results as above, which we use
to sketch the dotted area in the (g0,η0) plane of Fig. 3 denoting
the regime E � �P . For completeness, the exact expression
for the NFL scale here is

g0

g∗
eg∗lF + η0

η∗
eη∗lF = g0

g∗
+ η0

η∗
+ e − 1. (E3)

In the limit |δ∗| 	 1, the approximate solution is E ∼
(1 + η∗

g0+η0
)−1/η∗ , qualitatively the same as Eq. (E2).

It is clear from the vF β equation [Eq. (11)] that the NFL
effects are enhanced by the “total” fermion-boson coupling

FIG. 7. The NFL energy scale exp(−lF ) calculated using Eq. (E3)
along two lines in the (g0,η0) plane (inset). The bottom line in the
inset is the pairing transition line, along which the NFL scale is the
top (blue) curve. The top line in the inset gives the bottom (red) line
for the NFL scale. The ratio g∗/η∗ = 1.22.
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FIG. 8. Numerical RG flows projected onto the fermion-boson coupling plane (g,η) in the vicinity of the NQCL. Colored regions show
(g0,η0) values, which give states corresponding to the top (bottom) label when r0 > 0 (r0 < 0). In the orange area there is infinitesimal pairing
instability. (a) Case εg < εη corresponds to Fig. 3(a), with R0/g∗ = 0.06, g∗/η∗ = 8/13. (b) Case g∗ > η∗ corresponds to Fig. 3(b), with
R0/g∗ = 0.008, g∗/η∗ = 13/8. Here the topology of RG flows is the same as at the NQCL, except that the unstable fixed point (0,η∗) is
replaced by (0,∞) affecting flow at g = 0. (c,d,e,f) Flows of g, η, R, and pairing v in (c,e) correspond to initial values marked in panel (a);
same for panels (d,f) marked in (b). The horizontal axis is ln l.

g0 + η0. In the unfavorable limit of g0,η0 → 0, the Fermi
velocity takes on a logarithmically slow flow, which makes
the RG scale lF diverge and the NFL energy scale flat and
nearly zero; see Fig. 7.

APPENDIX F: FLOW IN VICINITY OF THE NQCL

We define the dimensionless coupling constant R ≡
rκ2

η/�
1+εη

y , where by r > 0 we label the mass of nematic
fluctuations [see Eq. (3)]: if r0 > 0, then simply the r = r0,
while for r0 < 0 in the vicinity of the nematic transition one
has an action for the nematic fluctuations of the same form
as Eq. (3), with the bare mass of fluctuations positive at the
new minimum and also labeled by variable r > 0. Since R is
the ratio of the two terms quadratic in the nematic fluctuation
field, it is relevant at any fixed point. The coupling of nematic
and fermions remains strong near enough to the NQCL, where

dimensionless mass rvF /u2
η�y < 1. In the case R0 �= 0, exact

flows for g,η can be given in integral form (see Fig. 8):

η(l) = η0 exp(η∗l)
1 + p(l) − p(0) + F (l)

,

g(l) = g0 exp(g∗l)
1 + p(l) − p(0) + F (l)

,

p(l) = g0

g∗
eg∗l ,

F (l) = η0

∫ l

0
dx

1

exp(−η∗x) + R0 exp(x/2)
. (F1)

For the case εg < εη, the most important feature of these flows
compared to those at the NQCL is that F (l) replaces a term
∼ exp(η∗l). Since F (l → ∞) remains finite for any finite R0,
this implies that the η diverges starting from any nonzero bare
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η0. Analytical expressions for the F can be obtained in limiting
cases η∗ = 0 and 1:

F (l,R0,η∗ = 0) = l − 2 ln

(
1 + R0 exp(l/2)

1 + R0

)
,

F (l,R0,η∗ = 1) = 2√
R0

[arctan(
√

R0e
l/2) − arctan(

√
R0)]

(F2)

with behavior

F (η∗ = 0,l → ∞) F (η∗ = 1,l → ∞)

2 ln(1 + 1/R0) 2/
√

R0[π/2 − arctan(
√

R0)]
R0 	 1 2| ln(R0)| π/R0

The fixed point (0,η∗), which is stable at the NQCL in the
case εg < εη, is therefore removed away from the NQCL and
replaced by (g∗,∞); see Fig. 8(a). Even though η diverges, the
nematic fluctuations are suppressed by even faster growth of
mass R, so the new fixed point is equivalent to a stable NFL
fixed point at (g∗,0). Consequently, a transition line between
the paired state and the NFL appears. We now show how the
transition line relates to the one for the case εg > εη shown in
Fig. 8(b), and how both lines depend weakly on value R0 	 1
compared to the transition line found at the NQCL in case
εg > εη. Following the simplified argument below Eq. (D3)
(Appendix D), the pairing can occur if f starts out positive
(implying η0 > g0) and the pairing RG scale l′T is estimated
by the scale at which f changes sign. Setting f (l′T ) ≡ 0, we get

η0

g0
= exp(−δ∗l′T ) + R0 exp

[(
1

2
+ g∗

)
l′T

]
. (F3)

In the relevant regime η0 > g0, with |δ∗| 	 η∗, we obtain the
following limits when δ∗ < 0 (i.e., εg > εη):

l′T =
{

1
1+g∗

ln
(

η0

R0g0

)
, R0 � b,

1
|δ∗| ln

(
η0

g0

)
, R0 	 b,

(F4)

where we defined b ≡ ( g0

η0
)(1/2+η∗)/|δ∗|. The latter limit connects

to the NQCL and gives the same value for the transition scale
[Eq. (D1)], showing a very weak dependence on R0 in this
limit. When εg < εη (i.e., δ∗ > 0), the limit R0 	 b is the one
giving

l′T = 1

1 + g∗
ln

(
η0

R0g0

)
, R0 	 b, (F5)

so as expected for εg < εη we find that the transition line
exists only away from the NQCL (R0 �= 0). These analytical
results match well with numerical ones [Fig. 6(b)] if one
takes into account the caveats of numerical observation of the
pairing transition discussed below Eq. (D3) (Appendix D).

Another way of understanding the presence of similar
transition line behaviors for both εg ≶ εη in the vicinity of
the NQCL is to focus on the general constraints in the pairing
function f (l). Away from the NQCL, it has the general form in
Eq. (10), and in stark contrast to the case R ≡ 0, where f (l →
∞) = η∗ − g∗, it always has the limit f (l → ∞) = −g∗ < 0
(no matter if η diverges or not). So if f (0) < 0, and f (l) does
not change sign, there is no possibility of a pairing instability.
In general, analyzing Eq. (F3) as a function of l′T , we can
find the number of sign changes, which together with f (0) =
η0/(1 + R0) − g0 and f (∞) = −g∗ < 0 gives a qualitative
picture of the pairing function f (l). We find that f (l) changes
once from initially positive (promoting attraction) to negative
if η0/g0 > 1 + R0. In contrast, it stays always negative if
η0/g0 < m, where 0 < m < 1 + R0 is the minimum value of
the right-hand side of Eq. (F3) as a function of l′T . Only when
δ∗ > R0(1/2 + g∗) does m < 1 + R0, creating the possibility
for m < η0/g0 < 1 + R0, for which f (l) starts out and finishes
negative, changing sign exactly twice. The limit R → 0 is then
obviously not universal, since apart from making m = 1, it also
allows values f (∞) that are not negative.
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