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Topological insulators in three spatial dimensions are known to possess a precise bulk-boundary cor-
respondence, in that there is a one-to-one correspondence between the five classes characterized by bulk
topological invariants and Dirac Hamiltonians on the boundary with symmetry protected zero modes. This
holographic characterization of topological insulators is studied in two dimensions. Dirac Hamiltonians on the
one-dimensional edge are classified according to the discrete symmetries of time reversal, particle hole, and
chirality, extending a previous classification in two dimensions. We find 17 inequivalent classes, of which 11
have protected zero modes. Although bulk topological invariants are thus far known for only five of these classes,
we conjecture that the additional six describe edge states of new classes of topological insulators. The effects
of interactions in two dimensions are also studied. We show that all interactions that preserve the symmetry are
exactly marginal, i.e., preserve the gaplessness. This leads to a description of the distinct variations of Luttinger
liquids that can be realized on the edge.
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I. INTRODUCTION

Topological insulators are characterized by bulk wave
functions in d spatial dimensions with special topological
properties characterized by certain topological invariants, such
as the Chern number.1–8 These physical systems possess a
kind of holography, or bulk-boundary correspondence, in
that they necessarily have protected gapless excitations on
the d = d − 1 dimensional surface. These surface modes are
typically described by Dirac Hamiltonians. For example in the
integer quantum Hall effect (QHE) in d = 2, the Chern number
is the same integer as in the quantized Hall conductivity, and
the edge states are chiral Dirac fermions.

Schnyder et al.,9 Ryu et al.,10 and Kitaev11 classified topo-
logical insulators in any dimension according to the discrete
symmetries of time reversal T, particle-hole symmetry C, and
chirality P and found five classes of topological insulators in
any dimension (see also Ref. 12). These classifications relied
on generic properties in any dimension, namely, the homotopy
groups of replica sigma models for Anderson localization9,10

or the eightfold periodicity property of spinor representations
of so(n) based on their Clifford algebras, which is a mild form
of Bott periodicity in K theory.11

The bulk-boundary correspondence was described ex-
plicitly in Ref. 9 for d = 3 spatial dimensions: using the
classification of d = 2 dimensional Dirac Hamiltonians in
Ref. 13 it was found that precisely 5 of the 13 Dirac classes had
protected surface states with the predicted discrete symmetries.
In that analysis, it was crucial that the classification in
Ref. 13 contained three additional classes beyond the ten
Altland-Zirnbauer (AZ) classes,14 since it was precisely these
additional classes that corresponded to some of the topological
insulators. The reason that there are more classes of Dirac
Hamiltonians is that AZ classes classify finite-dimensional
Hermitian matrices (Hamiltonians) without assuming any
Dirac structure.

In this paper we explore this “holographic classification” of
topological insulators (TI’s) and topological superconductors

(TS’s) in d = 2 spatial dimensions, in order to ascertain
whether it works out as nicely as for d = 3. The general d

dimensional case will be presented elsewhere.15 It is not obvi-
ous from the beginning that this holographic approach should
reproduce precisely the classifications based on topological
invariants. For instance, Anderson localization properties are
generally different in d < 2 versus d > 2. Also, we assume
that the surface states can be realized as Dirac fermions, which
is an additional constraint on top of the discrete symmetries
under consideration. More importantly, there is no guarantee
that there exists a microscopic two-dimensional (2D) model
with topological wave functions with the edge modes we
classify. However, the subsequent holographic classification
by two of the authors15 in arbitrary dimensions strengthens the
case for the holographic approach, as it was found using only
generic properties of Clifford algebras that this approach gives
precisely the known TI’s and nothing more in odd dimensions.
In even dimensions with d �= 2, only one additional class with
protected surface Dirac fermions was found. The d = 2 case
turned out to be special and it is the focus of this paper.
Also, it is important to examine this holographic classification
since the edge states are the most experimentally accessible
properties.

This study requires a classification of Dirac Hamiltonians
in d = 1, which is carried out below. We identify 17 unitarily
inequivalent classes. Since the classifications in Refs. 9–11
were based on generic properties in any dimension, it is
possible that there exist more classes of topological insulators
in d = 2 due to this richer structure specific to d = 1.
Indeed, based on our classification, we find 11 classes of
Dirac Hamiltonians with protected zero modes on the one-
dimensional (1D) edge. In addition to the previously predicted
topological insulators in classes A, C, D, DIII, and AII, we find
the classes AIII, BDI, two versions of CII, an additional version
of DIII, and a Z2 version of D (the definition of these classes
will be reviewed below; the notation goes back to Cartan).
One interpretation is that, unlike in d = 3, for d = 2 there
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are classes of d = 1 Dirac Hamiltonians that are protected for
reasons other than the existence of a topological invariant for
the d = 2 band structure. On the other hand, our new classes
could in principle be characterized by some as yet unknown
bulk topological invariants. Although this distinction needs to
be kept in mind, henceforth, for simplicity, we will refer to all
classes with protected zero modes on the boundary as TI’s.

For the QHE, bulk interactions lead to the fractional
QHE, and the effect of these interactions is that the edge
states become Luttinger liquids.16 This is unique to d = 2
since only in this dimension are quartic interactions on the
boundary marginal, which is not unrelated to the fact that
anions only exist in two dimensions. Thus a criterion for the
possible effects of bulk interactions is the existence of exactly
marginal perturbations of the free boundary Dirac Hamiltonian
that are consistent with the discrete symmetries, since an
exactly marginal perturbation deforms the theory but keeps it
gapless. This leads us to also classify quartic, exactly marginal
perturbations that are consistent with the discrete symmetries.
In addition to the ordinary, chiral, and helical Luttinger liquids,
we find the possibility of three additional varieties in the classes
DIII and CII.

The sections below cover the following. In Sec. II we review
the definitions of the ten AZ classes. Section III reviews the
holographic classification of TI in d = 3. One-dimensional
Dirac Hamiltonians are classified in Sec. IV. This classification
is completely general, and could have applications in other
areas, such as disordered systems. In Sec. V, we identify
the Dirac theories with protected zero modes, and Sec. VI
describes their consequent Luttinger liquids.

II. DISCRETE SYMMETRIES

The ten Altland-Zirnbauer (AZ) classes of random Hamil-
tonians arise when one considers time-reversal symmetry
(T), particle-hole symmetry (C), and parity or chirality (P).
These discrete symmetries are defined to act as follows on a
first-quantized Hamiltonian H:

T : TH∗T † = H, C : CHT C† = −H, P : PHP † = −H,

(1)

with T T † = CC† = PP † = 1. We consider two Hamiltonians
H,H′ related by a unitary transformation H′ = UHU † to be
in the same class, since they have the same eigenvalues. For
C and T , this translates to C → C ′ = UCUT and T → T ′ =
UT UT . For P , it amounts to P → P ′ = UPU †. It is thus
important to identify these unitary equivalences in order not
to overcount classes. We will sometimes refer to these unitary
transformations as gauge transformations.

For Hermitian Hamiltonians, HT = H∗, thus, up to a
sign, C and T symmetries are the same. We focus then on
these symmetries involving the transpose: THT T † = H and
CHT C† = −H. Taking the transpose of this relation, one finds
there are two consistent possibilities: T T = ±T and CT =
±C, which are unitarily invariant relations. It turns out that
unitary transformations allow us to choose T ,C to be real;
unitarity of T ,C then implies C2 = ±1,T 2 = ±1. The various
classes are thus distinguished by T 2 = ±1,∅ and C2 = ±1,∅,
where ∅ indicates that the Hamiltonian does not have the

TABLE I. The ten Altland-Zirnbauer (AZ) Hamiltonian classes.
∅ denotes the absence of respective symmetry.

AZ classes T 2 C2 P 2

A ∅ ∅ ∅
AIII ∅ ∅ 1
AII −1 ∅ ∅
AI +1 ∅ ∅
C ∅ −1 ∅
D ∅ +1 ∅
BDI +1 +1 1
DIII −1 +1 1
CII −1 −1 1
CI +1 −1 1

symmetry, and the sign is equivalent to the sign in the relation
between T ,C and their transpose. One obtains 9 = 3 × 3
classes just by considering the three cases for T and C. If the
Hamiltonian has both T and C symmetry, then it automatically
has a P symmetry, with P = T C† up to a phase. If there
is neither T nor C symmetry, then there are two choices,
P = ∅,1, and this gives the additional class AIII, leading
to a total of 10. Their properties are shown in Table I. We
also mention that one normally requires P 2 = 1. Below, we
will require T and C to commute, thus P 2 = T 2C†2 = ±1.
However one has the freedom P → iP to restore P 2 = 1. In
the sequel, in the cases with both T,C symmetry, we simply
define P = T C†, up to a phase.

III. REVIEW OF THE d = 2 DIMENSIONAL CASE

The connection between the bulk topological properties
and the existence of protected zero modes on the boundary
was first pointed out for d = 3 by Schnyder et al.9 This relied
on the classification of d = 2 dimensional Dirac Hamiltonians
found by two of the authors.13 In this section we review this
holographic classification of d = 3 TI’s since this illustrates
what we are attempting to accomplish in d = 2.

If one requires a Dirac structure of the Hamiltonian, then
the AZ classification can be more refined. The most general
Hamiltonian in d = 2 dimensions is of the form

H =
(

V+ + V− −i∂z + Az

−i∂z + Az V+ − V−

)
, (2)

where ∂z = ∂x − i∂y,∂z = ∂x + i∂y with x,y the spatial co-
ordinates and V±,Az,z the matrices. The above H is just
a relabeling of H = −iσx∂x − iσy∂y + �σ · �V + V0, i.e., the
block structure comes from the Pauli matrices σ .

One then finds the most general form of the T ,C,P matrices
that preserve the Dirac structure. Thirteen inequivalent classes
were found.13 In particular, there exist two inequivalent
versions of the chiral classes AIII, DIII, and CI, simply because
the discrete symmetries can take different forms. In was shown
in Ref. 9 that precisely 5 of the 13 classes corresponded to
the surface states of TI’s, with discrete symmetries consistent
with the predictions from bulk topology. As argued there, the
criterion for a TI is that V− has a zero mode, i.e., det V− = 0.
This leads to the following identification of TI’s, where the
nomenclature of Ref. 13 is given in parentheses. As far as the
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bulk properties, the are two types of topological invariants, Z
and Z2, which are also indicated. In the holographic approach,
Z versus Z2 corresponds to the two ways of obtaining a
zero mode, namely, V− = 0 or det V− = − det V− for V−
odd dimensional, and the exceptional case CII, which is also
Z2 (see Sec. V A for a more detailed discussion of these
topological identifications):

(1) AIII (1), DIII (5), CI (6): These are the three classes
that are doubled in comparison with AZ. For one of the two
in each these classes, the discrete symmetry forces V− = 0.
These are all of type Z or 2Z.17

(2) AII (3+): Here the discrete symmetries require V T
− =

−V−, which implies that if V− is odd dimensional, det V− = 0.
Type Z2.

(3) CII (9−): In this case, the discrete symmetries constrain
V− = ( 0 v−

w− 0 ) with vT
− = −v−,wT

− = −w−. Thus if v−,w− are
odd dimensional, then up to a sign, det V− = det v− det w− =
0. Type Z2.

IV. THE d = 1 DIMENSIONAL CLASSIFICATION OF
DIRAC HAMILTONIANS

In this section, we present the complete classification of d =
1 dimensional Dirac Hamiltonians. Although the identification
of TI’s and TS’s will be the subject of the next section,
it is useful to motivate what follows by discussing chiral
Dirac Hamiltonians with only right moving or left moving
fermions.18 Since a mass term necessarily couples left and
right movers (see Sec. V), these classes have a protected zero
mode for somewhat trivial reasons. Such Hamiltonians cannot
be realized on a 1D lattice and they necessarily break T and P.
However, they can appear as a d = 1 edge state of a 2D TI or TS
in classes A, C, and D, which break both T and P. An example
of class A is the quantum Hall effect. Depending on the number
of filled Landau levels there are Z number of edge states.1 An
example of class C is the spin quantum Hall effect in a singlet
time-reversal breaking superconductor. The spin quantum Hall
conductivity will be proportional to the Cooper pair angular
momentum, hence this is a Z TS. Although there is no known
experimental realization, a dx2−y2 + idxy superconductor (SC)
was extensively discussed theoretically.19,20 A realization of
class D would be the thermal Hall effect of a time-reversal
breaking superfluid of spinless (fully spin polarized) fermions.
The ν = 5/2 quantum Hall state could be a px + ipy paired
superfluid of composite fermions.19

All non-“chiral” noninteracting 1D Dirac Hamiltonians
with equal number of right movers and left movers can be
written as H = −iσx∂x + �σ · �A + V+, where �σ are the Pauli
matrices acting on a space of right or left movers |σx = ±〉.
Redefining Az = V−, these Hamiltonians can be expressed as

H =
(

V+ + V− −i∂x + A

−i∂x + A† V+ − V−

)
. (3)

The potentials V± are Hermitian matrices and A = Ax + iAy

where Ax,y are also Hermitian matrices in general. The
dimension of V± and A is the number of edge mode species for
each chirality. When V± and A are even dimensional we use �τ
to denote a set of Pauli matrices acting on the even dimensional
flavor space. 1 will denote the identity in either the σ or τ space.

Note that �σ and �τ have distinct physical meaning: �σ acts on
the space of “chirality” as we show explicitly in Sec.V B, and
it is responsible for the block structure of Eq. (3), whereas �τ
acts on the space of flavors which could be spin or pseudospin.
If there is spin-momentum locking (see Sec.V B) �σ will act on
the spin space as well as on the space of “chirality.”

The Dirac derivative structure of H constrains the form of
T ,C, and P in terms of �σ and �τ . Furthermore, we can specify
the conditions V± and A have to satisfy in order for H to
have discrete symmetries under specific T ,C, or P . Hence
the specific forms of symmetry transformations can be used
to classify Hamiltonians of form Eq. (3). Since, as described
below, there are multiple sets of matrices T ,C,P with the same
T 2, C2, P 2, this scheme refines the AZ classification of Table I.
Here we find even more classes of Dirac Hamiltonians in d = 1
than in d = 2, and more classes with symmetry protected zero
modes (see Sec.V).

In the rest of this section, we first specify the forms of T ,C,
and P symmetry that preserve the Dirac structure and describe
the resulting conditions on V± and A in a fixed �σ basis and
arrive at 25 classes as summarized in Table II. We then check
for unitary equivalences. The unitary transform is

H → UθHU
†
θ , (4)

with Uθ a rotation about the x axis in σ space by an angle θ :

Uθ = u · eiθσx/2 = u · [1 cos(θ/2) + iσx sin(θ/2)], (5)

where u is unitary and commutes with σx . We find 17 unitarily
inequivalent classes, each forming a row separated by a
horizontal line in Table II.

Consider first the T symmetry. In order to preserve
the derivative structure of the Hamiltonian Eq. (3), using
(−i∂x)T = i∂x , one finds that T must anticommute with σx .
Since T is (anti)symmetric and unitary, it is then proportional
to either σz or iσy . This leads to two ways of implementing
T-symmetry transformations: using either

T = ηt ⊗ iσy =
(

0 ηt

−ηt 0

)
, (6)

T̃ = η̃t ⊗ σz =
(

η̃t 0

0 −η̃t

)
, (7)

where ηt or η̃t are unitary matrices in general. Then, for a
Hamiltonian of form Eq. (3) to have T symmetry the potentials
have to satisfy either

ηt V
T
± = ±V± ηt , ηt A

T = −Aηt (8)

or

η̃t V
T
± = V± η̃t , η̃t A

∗ = −A η̃t . (9)

Now the condition T T = ±T (T 2 = ±1) which distinguishes
AI from AII, for instance, implies either ηT

t = ±ηt or η̃T
t =

±η̃t . Hence all AZ classes with T symmetry are further refined
depending on whether T [Eq. (6)] or T̃ [Eq. (7)] is used to
implement T. This distinction has a physical significance:
the use of T ∝ iσy leads to spin-momentum locking (see
Sec. V B).

Finally we can choose representations of ηt in terms of
�τ up to the unitary transformations: ηt = 1 if ηT

t = ηt , and
ηt = iτy if ηT

t = −ηt .21 We can do the same for η̃t . The

205116-3
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TABLE II. The properties of the 25 nonchiral d = 1 Dirac classes. Seventeen unitarily inequivalent classes are separated from each other
by a horizontal line. The first column lists the d = 1 Dirac classes. Columns T, C, and P show representations of symmetry transformations
for each class. The columns V± and A show symmetry constraints on the potentials. A blank cell denotes absence thereof. The symmetry
constraints guarantee zero modes in some classes (see Sec. V). The last column shows classes with symmetry protected zero modes and the
type of zero modes.

1d classes T C P V± A Zero mode

A ∅ ∅ ∅ V
†
± = V± Z

AIII(1) ∅ ∅ 1 ⊗ σz V± = 0 Z

AIII′(1) ∅ ∅ 1 ⊗ iσy V+ = 0

AIII(2) ∅ ∅ τz ⊗ σz τzV± = −V±τz τzA = Aτz

AIII′(2) ∅ ∅ τz ⊗ iσy τzV± = ∓V±τz

AII(1) 1 ⊗ iσy ∅ ∅ V± = ±V T
± AT = −A Z2

AII(2) iτy ⊗ σz ∅ ∅ τyV
T
± = V±τy τyA

∗ = −Aτy

AI(1) iτy ⊗ iσy ∅ ∅ τyV
T
± = ±V±τy τyA

T = −Aτy

AI(2) 1 ⊗ σz ∅ ∅ V T
± = V± A∗ = −A

C ∅ iτy ⊗ 1 ∅ τyV
T
± = −V±τy τyA

∗ = −Aτy 2Z

C′ ∅ iτy ⊗ σx ∅ τyV
T
± = ∓V±τy τyA

T = −Aτy

D ∅ 1 ⊗ 1 ∅ V± = −V T
± A∗ = −A Z,Z2

D′ ∅ 1 ⊗ σx ∅ V± = ∓V T
± AT = −A

BDI(1) iτy ⊗ iσy 1 ⊗ 1 iτy ⊗ iσy V± = −V T
± = ∓τyV±τy A = −A∗ = −τyA

T τy

BDI′(1) iτy ⊗ iσy τx ⊗ σx τz ⊗ σz V± = ±τyV
T
± τy = ∓τxV

T
± τx τx,yA

T = −Aτx,y

BDI(2) 1 ⊗ σz 1 ⊗ 1 1 ⊗ σz V± = 0 A∗ = −A Z

DIII(1) 1 ⊗ iσy 1 ⊗ 1 1 ⊗ iσy V+ = 0, V T
− = −V− A = −A∗ = −AT Z2

DIII(2) iτy ⊗ σz 1 ⊗ 1 iτy ⊗ σz V± = −V T
± = −τyV±τy A = −A∗ = −τyA

T τy Z2

DIII′(2) iτy ⊗ σz τx ⊗ σx τz ⊗ iσy V± = τyV
T
± τy = ∓τxV

T
± τx A = −τyA

∗τ y = −τxA
T τx

CII(1) 1 ⊗ iσy iτy ⊗ 1 iτy ⊗ iσy V± = ±V T
± = ∓τyV±τy A = −AT = −τyA

∗τy Z2

CII′(1) τx ⊗ iσy iτy ⊗ σx τz ⊗ σz V± = ±τxV
T
± τx = ∓τyV

T
± τy τx,yA

T = −Aτx,y

CII(2) iτy ⊗ σz iτy ⊗ 1 1 ⊗ σz V± = 0 A = −τyA
∗τy 2Z

CI(1) iτy ⊗ iσy iτy ⊗ 1 1 ⊗ iσy V+ = 0, τyV
T
− = −V−τy A = −τyA

T τy = −τyA
∗τy

CI(2) 1 ⊗ σz iτy ⊗ 1 iτy ⊗ σz V± = V T
± = −τyV±τy A = −A∗ = −τyA

∗τy

CI′(2) τx ⊗ σz iτy ⊗ σx τz ⊗ iσy V± = τxV
T
± τx = ∓τyV

T
± τy A = −τxA

∗τx = −τyA
T τy

unitary transform T → UT UT corresponds to η → uηuT

with u unitary, for all η’s. The unitary transformation affects
the choice of 1 vs τx for ηt ’s. However, the unitary transform
cannot affect the distinction between T and T̃ . In particular
when T is the only available discrete symmetry, T 2,T̃ 2 = ±1
completely classifies d = 1 Dirac Hamiltonians into AI(1),
AI(2) and AII(1), AII(2) (see Table II).

We can specify C, following steps analogous to those
for specifying T . As C must commute with σx for Dirac
Hamiltonian Eq. (3), it is in the linear span of 1 and σx . Hence
there are two possibilities:

C = ηc ⊗ σx, ηc V T
± = ∓V± ηc, ηc AT = −Aηc,

(10)
C̃ = η̃c ⊗ 1, η̃c V T

± = −V± η̃c, η̃c A∗ = −A η̃c,

with ηc and η̃c unitary. The condition CT = ±C that dis-
tinguishes AZ class C from D, for instance, implies that
ηT

c = ±ηc or η̃T
c = ±η̃c. One can again represent up to unitary

transformations ηc = 1 if ηT
c = ηc, and ηc = iτy if ηT

c = −ηc.
This again refines the AZ classes with C symmetry. However,
unlike T and T̃ which are unitarily inequivalent, C and C̃ are
unitarily equivalent for nonzero Ay (see the end of this section).

We denote such unitarily equivalent refinements using primed
notation within the same row in Table II. In particular, this
completes our classification of d = 1 Dirac Hamiltonians with
only C symmetry into C, C’, D, and D’.

Consider now P symmetry. P must anticommute with σx

for the Dirac Hamiltonian Eq. (3), so P is in the linear
span of σy and σz. For P unitary, this implies that P =
ηp · (cos b σy + sin b σz) for some real b. All these choices
are unitarily equivalent by rotations around the x axis in the
sigma space. However, in order to accommodate P = T C† in
all cases, we define two unitarily equivalent types:

P = ηp ⊗ σz, ηp V± = −V± ηp, ηp A = Aηp,
(11)

P̃ = η̃p ⊗ iσy, η̃p V± = ∓V± η̃p, η̃p A† = A η̃p,

where ηp and η̃p are unitary. The unitary freedom reduces
to ηp → uηpu† and the same is true for η̃. Up to unitary
transformations there are two choices: ηp,̃ηp = 1 or τz. This
gives four AIII classes.

Finally, for the classes with both T,C symmetries, T and
C must either commute or anticommute.12 The argument is
simple. Given both T and C, a P symmetry is provided by
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TABLE III. d = 1 chiral Dirac Hamiltonian classes.

d = 1 classes Zero modes Topological invariant Examples

A Z Z QH edge states
C 2Z 2Z Spin QH edge states in d + id-wave SC19,20

D Z Z Thermal QH edge states in spinless chiral p-wave SC19

P = T C† or P = C†T . These two P ’s must be equivalent up
to a sign since P 2 = 1, thus T C† = ±C†T , which is a gauge-
invariant condition. Thus T ,C commute or anticommute, since
in all cases, C† = ±C.

Now the AZ classes BDI, CI, DIII, and CII refine into
12 classes; among these 8 are gauge inequivalent. We label
the three subclasses associated with the BDI class by BDI(1),
BDI(2), BDI′(2), and similarly for CI, DIII, and CII. Table II
shows this classification with respective representations of T,
C, and P. In some cases ηt or ηc had to be taken to be τx which is
unitarily equivalent to 1, in order for T and C to anticommute.
When there are both T,C symmetries, then there is automat-
ically a P = T C† symmetry (up to a phase). Depending on
the type of C,T , one finds the Z2 graded multiplication: P =
T C†,P = T̃ C̃†,P̃ = T C̃†,P̃ = T̃ C†. This gives ηp = ηtη

†
c or

η̃t η̃
†
c and η̃p = ηt η̃

†
c or η̃t η

†
c.

Let us finally return to the issue of unitary equivalence.
The unitary transform of Eq. (4) preserves the Dirac structure
for Uθ of Eq. (5). The two possibilities T and T̃ for T
are unitarily inequivalent, because unitary transformations
preserve the relation T T = ±T , or equivalently, Uθσy,zU

T
θ =

σy,z. However, C and C̃ are unitarily equivalent for nonzero
Ay , since Uπ/2σxU

T
π/2 = i. In Table II, we listed all 25 classes

separating 17 unitarily inequivalent classes by horizontal lines.
It is important to note however that all of the 25 classes should
be viewed as inequivalent once Uθ is used to set Ay = 0 since
C,C̃ are inequivalent under the residual symmetry (if Ay = 0,
A∗ = AT .) We will take this route in the next section where
we investigate the symmetry protection of zero modes.

V. “TOPOLOGICAL INSULATORS” IN TWO DIMENSIONS

We conjecture a “holographic” classification of 2D TI-TS
based on the classification of d = 1 Dirac Hamiltonians that
are symmetry protected to be gapless, i.e., have a protected
zero mode. We list such d = 1 Dirac Hamiltonian classes in
Tables III and IV. For a subset of these classes, there exists

a d = 2 gapped Hamiltonian in the same class and a known
topological invariant which one can calculate from the ground-
state wave function which takes on Z values or Z2 values;9,10

these are indicated in the columns denoted “topological invari-
ant.” Surprisingly, for a class with a known bulk topological
invariant, there is a correspondence between the values it
can take and the number of gapless Dirac edge branches
[dimension of the block matrices Eq. (3) for the nonchiral
case]. Namely, classes with Z invariants are gapless for any
number of Dirac edge branches; classes with Z2 invariants are
gapless only when there is an odd number of branches for
each chirality. The main point of this paper is that there are
additional classes with protected edge zero modes beyond the
five predicted on the basis of the known topological invariants.

In the rest of this section we enumerate the classes of
d = 1 Dirac Hamiltonians that have a protected zero mode as a
consequence of the discrete symmetries. We then comment on
the microscopic 2D models corresponding to a subset of our
new classes. We finally discuss physical properties of these
classes such as spin-momentum locking through a second
quantized description.

A. First quantized description

First we discuss the chiral (only right or left moving) Dirac
fermion classes we mentioned at the beginning of Sec. IV.
These are massless for a “trivial” reason since a mass term
necessarily couples left to right. As T and P transform left to
right movers (see below), Hamiltonians with these symmetries
cannot be chiral. On the other hand, AZ classes A, C, and
D have at most a C symmetry and can be chiral. For chiral
Hamiltonians in classes A, C, and D, anyZ number of branches
will be gapless. For chiral class C, since the auxiliary τ space
is doubled, as explained above this is of type 2Z (see Table III
for the summary).

Now consider nonchiral Hamiltonians of the form Eq. (3)
whose block-diagonal structure implies that the second quan-
tized theory has both right movers ψR ≡ 〈x|σx = +〉 and left

TABLE IV. d = 1 nonchiral Dirac Hamiltonian classes with symmetry protected zero modes. The spin-momentum locking column is left
blank when spins cannot be assigned because the time-reversal operators do not involve either iσy or iτy . New classes are shown in boldface.

d = 1 classes T C P Zero modes Top. inv. Locking Examples

AIII(1) ∅ ∅ σz Z
AII(1) iσy ∅ ∅ Z2 Z2 Y HgTe/(Hg,Cd)Te22

D ∅ 1 ∅ Z2

BDI(2) σz 1 σz Z
DIII(1) iσy 1 iσy Z2 Z2 Y (p + ip) × (p − ip)-wave SC
DIII(2) iτy ⊗ σz 1 iτy ⊗ σz Z2 Z2 N Particle-hole symmetric KM model
CII(1) 1 ⊗ iσy iτy ⊗ 1 iτy ⊗ iσy Z2 Y Doubled KM
CII(2) iτy ⊗ σz iτy ⊗ 1 1 ⊗ σz 2Z N Trigonally strained graphene29
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movers ψL ≡ 〈x|σx = −〉 (see below). The Hamiltonian H is
gapless if it has a zero eigenvalue at k = 0, i.e., det H(k =
0) = 0. Below we simplify this into a condition on V−.

The potential Ax can be removed by redefining the fields in
the second quantized theory: ψL,R → e−i

∫ x
Ax (x)dxψL,R (see

Sec. V B). A constant V+ is a chemical potential which shifts
the overall energy levels. Hence we set this to zero. Now the
condition for the existence of a zero mode and hence a gapless
spectrum is

det

(
V− iAy

−iAy −V−

)
= 0. (12)

However, Eq. (12) is difficult to use in general.23 Hence we
use the freedom of unitary transform Uθ to set Ay = 0. The
criterion for a TI is now simply det V− = 0 for fixed Ay = 0.

Now we test if the conditions on V− imposed by symmetry
listed in Table II guarantee det V− = 0. As the choice of Ay =
0 makes C and C̃ inequivalent we consider all 25 entries.
Once we identify symmetry protected gapless Dirac classes,
we check for unitary equivalence among those by consulting
Table II. In Table IV we list unitarily inequivalent protected
classes.

There are two generic types of constraints on V− that protect
a gapless spectrum. First, V− = 0 guarantees det V− = 0
independent of the dimension of V− and the Z number of
edge modes. This is identified with a type Z TI. If the
T or C symmetry involves a doubling of the auxiliary τ

space, then this doubling is the signature of a type 2Z TI.15

Second, V T
− = −V− implies det V− = − det V− when V− is

odd dimensional, and hence det V− = 0. By analogy with
the 3D case, those that rely on V T

− = −V− with V− odd
dimensional should be of Z2 type because of the even-odd
aspect.

There are also two exceptional cases:
(1) DIII(1): Here η̃t = iτy , η̃c = 1, ηp = iτy . Here V T

− =
−V−, however it is even dimensional and constrained to be of
the form V− = ( a− b−

b− −a− ), with aT
− = −a−,bT

− = −b−. Thus, if
a−,b− are one dimensional, then V− = 0. The type is Z2.

(2) CII(1): Here ηt = τx,ηc = iτy,ηp = −τz. V− = ( 0 b−
c− 0 )

with bT
− = −b−,cT

− = −c−. If b−,c− are odd dimensional,
then, up to a sign, det V− = det b− det c− = 0. The type is
Z2.

Table IV lists new classes with protected Dirac edge modes
in boldface. An immediate question is whether these classes
can be realized in a microscopic 2D model and, if so, why
they were missed in previous classifications. First we point
out that, by considering an additional reflection symmetry,
Yao and Ryu24 recently found topological invariants for all of
our new classes except CII(1). As first noticed by Fu,25 when
considering microscopic realizations of topological insulators,
point-group symmetry can play an important role. While
we required our nonchiral edge state to be described by a
Dirac Hamiltonian, it is plausible that the latter assumption
automatically implies a reflection symmetry for some of the
classes for d = 1. This is a topic to be investigated further in
the future. Nevertheless, what is clear from the work24 is that
indeed there are microscopic 2D theories whose edge states
are described by our new classes.

Turning to physical realizations of the new classes of
edge states so far we have found two examples: DIII(2) and
CII(2). An example of DIII(2) is the Kane-Mele model in the
presence of particle-hole symmetry.26,27 This can be viewed
as a special case of AII(1)-type TI with additional particle-
hole symmetry. The additional symmetry enables quantum
Monte Carlo simulations without sign problems. But it also
means the absence of spin or charge edge current as we will
discuss further in the next section. Of particular interest is
the zero-field QHE in trigonally strained graphene28,29 as an
example of CII(2). The details of this identification will be
presented elsewhere.30 However, the underlying reasoning is
rather simple. The observation of Landau levels in Ref. 28
in the absence of magnetic field calls for a Z type TI among
time-reversal symmetric classes. In the original classification
by9 Z type TI’s are found only among T breaking classes. Since
trigonal strain introduces pseudomagnetic fields of opposite
direction for two valleys, there are 2Z edge modes when the
system is subject to a confining potential.

B. Second quantized description and spin-momentum locking

One can define a second-quantized Hamiltonian,

H =
∫

dx
∑
a,b

ψ†
a (x)Habψb(x), (13)

from H of Eq. (3). Now let T,C be time-reversal and particle-
hole transformation operators in the field theory and define

TψaT† = Tabψb, CψaC† = Cabψ
†
b . (14)

This and the T ,C properties of H [Eq. (1)] imply the
invariance: THT†=H , CHC†=H .

Since right movers are ψR ≡ 〈x|σx = +〉 and left movers
are ψL ≡ 〈x|σx = −〉, the spinor field ψ has the block
structure

ψ =
(

ψR + ψL

ψR − ψL

)
, (15)

in the eigenbasis of σz. Upon passing to Euclidean space by
t → −iτ , the Schrödinger equation for H in Eq. (3), i∂tψ =
Hψ , becomes ∂zψR = ∂zψL = 0, where ∂z = ∂τ + i∂x,∂z =
∂τ − i∂x . This confirms the anticipated chirality of ψR and
ψL.

The T and P transformations exchange left and right
movers:

T : ψR → −ηtψL, ψL → ηtψR,
(16)

T̃ : ψR → η̃tψL, ψL → η̃tψR,

and

P : ψR → ηpψL, ψL → ηpψR,
(17)

P̃ : ψR → −η̃pψL, ψL → η̃pψR.

On the other hand, C transforms fields into their conjugates:

C : ψR → ηcψ
†
R, ψL → −ηcψ

†
L,

(18)
C̃ : ψR → η̃cψ

†
R, ψL → η̃cψ

†
L.
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Hence for the AZ classes A, C, and D, which do not have T or
P symmetry, chiral states with only ψR or ψL can be realized
as edge states and are protected from a mass gap since the
mass term couples left and right.

We now use the T symmetry to assign (pseudo)spins and
check for spin-momentum locking. On physical grounds, we
consider the smallest number of components in each class, i.e.,
either 1 or 2. It is well known that T has the representation
T = ( 0 1−1 0 ) on spin-1/2 particles and T2 = −1. Hence when
the representation of T involves iσy or iτy and T2 = −1 in
Table II, �σ or �τ should act on the spin space. This is particularly
interesting since |σx = +〉 and |σx = −〉 are right and left
moving states by definition of the Hamiltonian Eq. (3): this,
as we mentioned earlier, is a manifestation of spin-momentum
locking.

The classes with spin-momentum locking are AII(1), DIII(1),
and CII(1). These are all TI-TS edge states of type Z2 within
our scheme. For these, we can label the fields ψR = ψR↑,ψL =
ψL↓. AII(1) and DIII(1) have well-known examples. QSH
edge states4,5,22 in the absence of particle-hole symmetry are
examples of the AII(1) class. Note that we derived here the
spin-momentum locking, which arises from the spin-orbit
coupling in QSH systems, on very general grounds. A 2D
version of a He3B superfluid phase where up-spin pairs and
down-spin pairs have opposite angular momentum would be
an example of the DIII(1) class.31 Such a state has not been
realized yet, but perhaps could be in a film geometry with
control over the boundary conditions. CII(1) can be realized30

as a particle-hole doubled version of AII(1) much the same way
as how in 3D a CII TI was constructed out of two copies of the
3D Dirac Hamiltonian in9

DIII(2) and CII(2) classes have both spin components for
right movers and left movers each. The Kane-Mele (KM)
model4 at zero chemical potential has particle-hole symmetry
and hence does not strictly speaking belong to class AII. More-
over the spin or charge edge current is absent as the current
operators are odd under charge conjugation.26 Nevertheless,
there is a charge neutral gapless edge mode.26,27 This is an
example of the DIII(2) class.30 CII(2) is unique in that spin
is tied to charge, i.e., particle-hole transformations flip spin:
(ψR↑,ψR↓) → (−ψ

†
R↓,ψ

†
R↑). Note that these spin-momentum

locking properties offer concrete distinctions between classes
(DIII(1), CII(1)) and (DIII(2), CII(2)).

AIII(1), nonchiral D, and BDI(2) are spinless fermions. Note
that we find the nonchiral D TI to be of Z2 type and distinct
from the chiral D which is of Z type.

VI. VARIATIONS OF LUTTINGER LIQUIDS

We are now in the position to consider how interactions
consistent with the T,C,P symmetries could affect the d = 1
edge states. In general, bulk interactions should lead to
interactions on the edge. If the bulk stays gapped, one can
focus on the edge states even in the presence of interactions.
While the topological invariants based on single-particle wave
functions cannot be applied to interacting systems, the edge
state theory can incorporate the effects of interactions.

The fractional quantum Hall effect (FQH) is the prime
example. The FQH edge state resulting from Coulomb

interaction in the bulk has no topological invariant associated
with it, while the integer QHE is associated with the Chern
number.2 However, the fractional quantum Hall edge states
are chiral Luttinger liquids which are related to the integer
quantum Hall edge states (chiral Fermi liquid) by the addition
of an exactly marginal perturbation to the Dirac action.16 An
exactly marginal perturbation on a noninteracting edge state
preserves the gaplessness, but deforms it into an interacting
theory with nontrivial exponents, fractional charges, etc.

Motivated by the FQH case, we classify the exactly
marginal perturbations for each proposed TI-TS’s in Table IV,
as a way of characterizing the effect of bulk interactions.

The starting point is the action for the generic free Dirac
Hamiltonian Eq. (13):

S =
∫

dxdt[ψ†
R(∂z + Ax + V+)ψR + ψ

†
L(∂z − Ax + V+)ψL

+ (ψ†
L(V− + iAy)ψR + H.c.)]. (19)

Recall that ψR and ψL are vectors in the space represented by
τ . V+ can be interpreted as a chemical potential, or equivalently
the time component of a gauge field as it couples to currents
ψ

†
RV+ψR + ψ

†
LV+ψL. We set it to zero. If V− + iAy is one

dimensional, it simply corresponds to a complex mass. Hence
removing Ay through a unitary transform Uθ is equivalent
to removing the phase of the mass by redefining ψL. After
removing Ay , and absorbing the physical gauge field Ax to
the definition of the ψ fields, the action for the massless zero
mode simplifies to

S =
∫

dxdt(ψ†
R∂zψR + ψ

†
L∂zψL). (20)

We consider left-right current-current perturbations in
analogy with Luttinger liquids and single out those preserving
the T, C, P of the free theory. Consider the currents J a

L =
ψ

†
LtaψL, J a

R = ψ
†
RtaψR , where ta is a Hermitian matrix acting

on the τ space, and define the operator Oa = J a
LJ a

R (no sum
on a). Since ψ has scaling dimension 1/2, the operator Oa

has dimension 2, i.e., it is marginal, and a term gOa can be
added to the Lagrangian. For the T ,T̃ ,P,P̃ symmetries, Oa

is invariant if the appropriate η commutes with ta . For the
C,C̃ symmetries which transform fields into their conjugates,
invariance of the operator additionally requires (ta)T = ±ta .
The renormalization-group beta function for Oa is in general
proportional to the quadratic Casimir for the Lie algebra
generated by the ta . If this beta function vanishes for a
symmetry invariant Oa , it is an exactly marginal perturbation.

For all TI-TS’s, the marginal perturbation Oa is invariant
for ta = 1, and we can consider the action

S =
∫

dxdt(ψ†
R∂zψR + ψ

†
L∂zψL + gJLJR). (21)

Since the currents JL,R are then U (1) currents, the beta
function vanishes, making this perturbation exactly marginal.
Equation (21) describes different versions of Luttinger liquids
for different classes.

The choice ta = τy , which requires at least two components
for each chirality, also yields an invariant Oa for the classes
DIII(2) and CII(1,2). Since this involves a single ta , it again
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generates a U(1) current and the associated Oa is again exactly
marginal.

We list each exactly marginal perturbation for the above
TI-TS’s:

(1) AII(1) and DIII(1): Both are one-component spin-
momentum locked classes. The only allowed perturbation is
with ta = 1:

Oa = (ψ†
L↓ψL↓)(ψ†

R↑ψR↑). (22)

The so-called helical liquid for the interacting QSH edge
state33 requires such a perturbation. Interestingly such a
bulk interaction effect on the edge states has been recently
confirmed.26,27,34

(2) DIII(2) and CII(2): Both are two-component classes
which can be perturbed with ta = 1 and ta = τy . ta = 1 yields
the spin-full Luttinger liquid with

Oa = (ψ†
L↑ψL↑ + ψ

†
L↓ψL↓)(ψ†

R↑ψR↑ + ψ
†
R↓ψR↓), (23)

whereas ta = τy turns J a
L and J a

R into spin-singlet currents and

Oa = −(ψ†
L↑ψL↓ − ψ

†
L↓ψL↑)(ψ†

R↑ψR↓ − ψ
†
R↓ψR↑). (24)

These are new types of Luttinger liquids which we refer to as
the “spin-singlet liquid.”

(3) AIII(1), nonchiral D, and BDI(2): These are spinless
fermion classes which can be single component. They can
only be perturbed with ta = 1.

(4) CII(1): This has both particle and hole components
with spin-momentum locking for each component. It is a
different kind of Luttinger liquid, which we refer to as the
“double helix,” since the free part is essentially a doubled KM
model:

Oa = (ψ†
L↓ψL↓ + ψ

′†
L↓ψ ′

L↓)(ψ†
R↑ψR↑ + ψ

′†
R↑ψ ′

R↑). (25)

Next consider adding more than one perturbation, i.e.,∑
a gaOa . In general, the operator product expansion of

Oa with Ob generates another O operator associated with
the current corresponding to [ta,tb], and this gives rise to
a renormalization-group beta function proportional to the
quadratic Casimir of the Lie algebra generated by the ta . Only
classes DIII(1) and CII(2) have two allowed Oa listed above:
ta = 1 or τy . However, since these ta commute, this two-
parameter perturbation is also exactly marginal. In summary,
we find all possible symmetry preserving quartic interactions
to be exactly marginal, deforming the free Dirac edge theory
into an interacting one that preserves the gaplessness.

VII. CONCLUSIONS

We classified Dirac Hamiltonians in one dimension ac-
cording to the discrete symmetries of time-reversal, particle-
hole, and chiral symmetry, and found 17 inequivalent ones.
Assuming that two-dimensional topological insulators (or su-
perconductors) are realized on their one-dimensional boundary
as Dirac fermions, we found 11 of these classes that possessed
a zero mode which was protected by the symmetries. This
should be compared with the classifications based on bulk
topological or boundary localization properties in Refs. 9–11,
which predict five classes in any dimension. The classes we
find beyond the standard five classes are in classes AIII, BDI,
two versions of CII, a distinct version of DIII, and a Z2 version
of D. We suggested that physical realizations for the new TI’s in
classes CII(1) and CII(2) could perhaps be a doubled Kane-Mele
model and trigonally strained graphene, respectively.

The simplest interpretation of the existence of these new
classes of TI in two spatial dimensions is that there are theories
with boundary zero modes that are not necessarily protected
by topology, and this is attributed to the richer structure of the
classification of Dirac Hamiltonians in one dimension. On the
other hand, it remains a possibility that the new classes are
characterized by some as yet unknown topological invariants.

We also studied possible manifestations of bulk interactions
as quartic interactions on the boundary in two dimensions. For
all classes of potential TI’s, we found that all such interactions
that preserve the discrete symmetries are exactly marginal. The
exact marginality preserves the gaplessness, but deforms the
theory into distinct variations of Luttinger liquids.
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