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We study a theoretical model of virtual scanning tunneling microscopy �VSTM� �A. Sciambi, M. Pellic-
cione, M. Lilly, S. Bank, A. Gossard, L. Pfeiffer, K. West, and D. Goldhaber-Gordon, arXiv:1008.0668
�unpublished�; A. Sciambi, M. Pelliccione, S. R. Bank, A. C. Gossard, and D. Goldhaber-Gordon, Appl. Phys.
Lett. 97, 132103 �2010��: a proposed application of interlayer tunneling in a bilayer system to locally probe a
two-dimensional electron system �2DES� in a semiconductor heterostructure. We consider tunneling for the
case where transport in the 2DESs is ballistic and show that the zero-bias anomaly is suppressed by extremely
efficient screening. Since such an anomaly would complicate the interpretation of data from VSTM, this result
is encouraging for efforts to implement such a microscopy technique.
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I. INTRODUCTION

The availability of increasingly clean low-density two-
dimensional electronic systems �2DESs� has allowed access
to a regime in which electron-electron interactions play a
major role.1–4 Evidence is accumulating from transport mea-
surements that the physics of this regime is much richer than
was previously appreciated �see Ref. 5 and references
therein�. In particular, while much is understood about the
two limiting cases, rs�1 /��naB

2 →0 �Fermi liquid� and rs
→� �Wigner crystal�, experiments on systems with interme-
diate values of rs=10–30 reveal a host of unanticipated
anomalies.5,6 �Here n is the density of doped electrons or
holes and aB is the effective Bohr radius, aB=�2� /m�e2,
where m� is the effective mass, e is the electron charge, and
� is the dielectric constant of the host semiconductor.�

Experimental attempts to understand electron organization
in 2DESs have been based mainly on transport measure-
ments on large �micrometer to millimeter� scales. Direct in-
formation on the local structure of electronic states could
powerfully elucidate the physics underlying these transport
measurements, including the recently proposed “electronic
microemulsion phases.”6,7 Momentum-space probes4 and
finite-frequency probes8 have provided important insights
but the residual spatial inhomogeneity in even the cleanest
low-density 2DESs favors the use of real-space probes. Over
the past decade, important progress has been made in locally
probing 2DESs.9–14 However, a 2DES is generally buried
�100 nm deep in a heterostructure, preventing the use of
scanning tunneling microscopy �STM�, which has offered
powerful insights into 2DESs at surfaces by mapping the
local density of states at low energies.

An ongoing effort to develop a comparable technique for
buried structures—termed virtual STM or VSTM �Refs. 1
and 2�—is based on tunneling into a 2DES not from a
scanned metal tip as in STM, but rather from a second
“probe” 2DES grown above the 2DES of interest �henceforth
“subject 2DES”�, within the same heterostructure. Since the
barrier between the two 2DESs can be made very low by
proper design of the layer structure, and since the probe

2DES is not perfectly compressible, it should be possible to
tune the barrier at a particular location by applying a voltage
to a sharp metal tip positioned above the heterostructure sur-
face �see Fig. 1�. Separate contact can be made to the probe
and subject layers.15 Tunneling between the probe and sub-
ject 2DESs would then be strongly enhanced locally below
the tip and the location of enhanced tunneling could be
scanned across the sample 2DES by scanning the metal tip
above the heterostructure. Such enhanced tunneling by over
two orders of magnitude has recently been demonstrated by
one of the present authors, though up to now the enhance-
ment is over large areas as the tuning is done using a large-
area gate rather than a sharp tip.1,2 Moving to a scannable tip
will reduce signal size and require lock-in detection tech-
niques to separate local tunneling current from large area
background tunneling. Work is underway to implement this.

In this paper, we introduce a minimal model for VSTM—
two parallel 2DESs connected by tunneling at a single
point—and use it to address the feasibility of VSTM at its
simplest level. A VSTM setup should meet the following
criteria, which our model must address: �i� there should be
sufficient tunneling near zero bias to probe the low energy
physics of interest and �ii� the tunneling rate should be sen-
sitive to the local density of states at the location of tunnel-

Sample 2DES

Probe 2DES

FIG. 1. �Color online� A schematic depiction of the proposed
VSTM setup where a voltage applied by an actual tip induces a
virtual tip in the probe 2DES which can then measure the sample
2DES via a tunneling process. Figure courtesy of Adam Sciambi
�Ref. 2�.
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ing. The first requirement could be violated if there is a gap
or pseudogap in the tunneling density of states near zero
energy, caused by long-range Coulomb interactions. The
presence or absence of such a gap should depend only on the
character of long-range interaction and the screening proper-
ties of the 2DESs, not on the microscopic nature of the tun-
neling process. Thus, for simplicity, we study a model prob-
lem in which an electron tunnels from a localized state near
the probe 2DES to a localized state near the subject 2DES,
and where the only coupling to the 2DESs is through the
Coulomb interaction. This has all the same Coulomb physics
as the more general problem in which the tunneling electron
goes directly from one 2DES to the other. However, in the
latter case, there are potential complications related to the
fact that the tunneling electron is not distinguishable from
the electrons that are doing the screening; the justification for
ignoring exchange effects in this latter problem has been
discussed by Levitov and Shytov.16

If transport in the two 2DESs is diffusive, the well-known
“zero-bias anomaly” occurs as a consequence of the ineffi-
cient screening of charge in 2D. Specifically, in 2D the con-
ductivity has units of velocity and hence the Coulomb energy
E�t��e2 /R�t� associated with adding a charge to a 2D sys-
tem decays with time in proportion to the screening radius
R�t���t. The path-integral formulation of the problem re-
sults in an action that logarithmically diverges at small bias
for tunneling into such a system. The result is a strong sup-
pression of the tunneling rate near zero bias,16–19 violating
criterion �i�. Moreover, the tunneling rate has a dominant
contribution from long-distance physics, violating criterion
�ii�.

Our central result states that in the clean limit �infinite
mean-free path ��, even in 2D, screening is sufficiently effi-
cient to make the tunneling action at zero bias finite and
hence no zero-bias anomaly occurs. In this regime, the tun-
neling rate can be calculated perturbatively and is propor-
tional to the local density of states. Our results indicate that
using VSTM to probe the low-energy local density of states
should be feasible, if the 2DES of interest is clean enough.

Naturally, in any real system, � is never infinite. The
screening at asymptotically long distances, and hence the
tunneling spectrum at asymptotically low energies, is always
diffusive. Therefore, at low enough energies, the pseudogap
behavior of Levitov and Shytov will be recovered.16 The
crossover between ballistic and diffusive screening occurs on
length scales, �, and hence affects the tunneling spectrum at
energies below Eco�e2 / ����=AEF�1 /rs���Q /��, where � is
the dielectric constant of the semiconductor, EF is the Fermi
energy, � is the conductivity of the screening electron gas,
�Q=e2 /h, and A=2�2�.

The outline of this paper is as follows. In Sec. II, we
present the model, which treats the tunneling electron as a
two-state system and the remaining electrons in the 2DES
that interact with the tunneling electron as the “bath” degree
of freedom. In Sec. III, we calculate the tunneling rate to
lowest order in the tunneling matrix element. Finally, in Sec.
IV, we discuss the implications of our results.

II. MODEL

We consider a simple model that captures essential as-
pects of the VSTM setup sketched in Fig. 1. Our model

consists of two 2DESs characterized by 2D Fermi liquids
with electron densities, �1 and �2, separated by a distance a.
A voltage bias, Vbias, is applied across a single tunneling
center at the origin �see Fig. 2�. We treat the tunneling elec-
tron as a two-state system represented by �z= �1 in the limit
of a small bare tunneling matrix element �. The tunneling
electron interacts with the density fluctuations of the 2DESs
via a Coulomb interaction.

In the ballistic transport limit, the action for this system is

S��1,�2,,�z� = S� + S�,�. �2.1�

Here S� is the bare tunneling action in the absence of any
interactions and S�,� is the action for the rest of the �bath�
electrons, which we treat in the context of linear-response
theory

S� =
1

2
Vbias�z −

1

2
���x, �2.2�

S�,� =� d	

�2��� d2q

�2��2 ��†K� + �†V�� , �2.3�

where �= �1 /2�	�1+�z�q , i	�� , �1−�z�q , i	��
,
�= 	�1�q , i	� ,�2�q , i	�
,

K = �
1
−1�q,i	� V�q�
V�q� 
2

−1�q,i	�
� ,

V = �U1�q� − V�q� 0

0 U2�q� − V�q�
� , �2.4�

where 
i denotes the density correlation function in each
layer i, V�q� denotes interlayer interaction, and V is the cou-
pling between the tunneling electron and the bath electrons
through the intralayer �U�q�� and interlayer �V�q�� Coulomb
interaction. For simplicity we restrict ourselves to the sym-
metric case 
1

−1�q , i	�=
2
−1�q , i	�=
−1�q , i	� and U1�q�

=U2�q�=U�q�, although the general case can be treated in an
identical fashion.

Since Eq. �2.1� is quadratic, �i’s can be readily integrated
out to yield

S��z� =� d	

2�

1

2
Vbias�z�i	� −

1

2
��x�i	�� + S0, �2.5�

where

FIG. 2. A tunneling electron in state �z=+1 in the upper layer
�probe 2DES�, interacting with charge density at position r� in the
same layer and charge density at position r�� in the lower layer
�subject 2DES�.
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S0��z� � −� d	d2q

�2��3

��U�q� − V�q���2��z�i	��2


−1�q,i	� + V�q�
. �2.6�

Here, the effect of correlations in the 2DESs is encoded in

�q , i	�. We treat the correlation effects at zero temperature,
through random-phase approximation �RPA� in the rest of
this paper; however, the form of the action in Eqs. �2.5� and
�2.6� is more general. The finite-temperature calculation is
considerably messier but not substantively different. The
temperature enters the problem primarily through the modi-
fication of the screening properties of the conducting planes.
This means that at temperatures low compared to the Fermi
energy, where the experiments of interest will be carried out,
the effects of finite temperature are expected to be not only
continuous, as in the polaron problem,20 but small as well.
The semiclassical results of Levitov and Shytov16 can be
reproduced in this formalism if 
 is taken to be the suscep-
tibility of a diffusive 2DES instead of a ballistic 2DES.

III. PERTURBATIVE CALCULATION
OF THE TUNNELING RATE

A. Evaluation of the action

We evaluate the action Eqs. �2.5� and �2.6� using the RPA
expression for 
 in the clean limit


�q,i	� �

2D

o �q,i	�
1 − U�q�
2D

o �q,i	�
, �3.1�

where the bare density correlator at zero temperature is


2D
o �q,i	� = − �o�1 −

�	�
�	2 + �vFq�2� . �3.2�

Here �o=kF /�vF is the bare density of states per volume at
the Fermi surface. Furthermore, we assume that the distance
a between the two 2DESs sets the shortest length scale and
hence serves as the UV momentum cutoff.21 We then make
use of the approximate expression U�q�−V�q��2�ae2

+O���q�a�2� to lowest order in �q�a. This makes it possible to
explicitly perform the q integral in Eq. �2.6� to yield

Seff��� = S� +
1

2
�

1/�

1/�0 d	

2�
��z�i	��2
�	� ,


�	� �
�2	2

4�2�ovF
2�1 + ��

�� vF

a	
�2

−

2� log
� vF

a	
��1 + ��2�

�1 + ��
� . �3.3�

We define the dimensionless parameter ��2�ae2�o
=2�a /aB and the UV frequency cutoff 1 /�0=vF /a. Applying
the analysis of Levitov and Shytov16 to this effective action,
it is easy to see that the accommodation time and the action
at zero bias are finite; therefore, the tunneling rate can be
computed perturbatively in � as we do explicitly in the next
section.

B. Tunneling rate

Seff in Sec. III A is of the same general form as for the
“spin-boson” problem, in which the heat bath is treated as a
collection of Harmonic oscillators. The heat bath of phonons
is typically defined in terms of a spectral distribution func-
tion, J�	�, which is simply the Hilbert transform of the ker-
nel 
�	� in Sec. III A


�	� =
1

�
�

0

�

d	�� 	�

	2 + 	�2�J�	�� , �3.4�

where

J�	� = A	2e−	/� �3.5�

and

A =
1

4��ovF
2 � �

1 + �
�3

, � =
vF�1 + ��

a
. �3.6�

Changes in the form of the high-frequency cutoff in the spec-
tral distribution function, J�	�, result in a frequency-
independent additive correction to the kernel, 
�	�. In turn,
this additive constant produces only an �unimportant� addi-
tive correction to the ground-state energy that is not involved
in the dynamics. The low-frequency behavior J�	x is con-
ventionally classified22 as “super-Ohmic” for x�1 �the
present case� where perturbation theory is applicable,
“Ohmic” for x=1 �which is obtained in the diffusive case�,
and “sub-Ohmic” for x�1 which requires nonperturbative
methods.

With the spectral function in hand, following the steps of
Ref. 22, the tunneling matrix element to second order is

�−1�Vbias� = �2��̃2��Vbias�

+
���̃2

�
� �

2Vbias
I1��Vbias

�
�e−Vbias/��.

�3.7�

Here I1�x� is a modified Bessel function of the first kind, �

� ��2

2A ��F has the dimension of energy and A and � are
defined in Eq. �3.6�. We note that the effect of Coulomb
interaction enters the tunneling rate through the renormalized
tunneling matrix element

�̃ = � exp�−
�2rs

2� � 1

1

2
�aB

a
� + 1�

2

� , �3.8�

where rs= �1 /n��1/2aB
−1 is the ratio of the Coulomb interac-

tion energy to the kinetic energy, n is the electron density,
and aB is the effective Bohr radius. Tunneling is suppressed
for lower density, i.e., for larger rs. The most notable feature
of our results in Eqs. �3.7� and �3.8� is the existence of an
“elastic” term proportional to the Dirac delta function
��Vbias�, which dominates the tunneling rate in the Vbias→0
limit. This term is absent in the Ohmic and sub-Ohmic cases
due to the vanishing overlap �infrared catastrophe� between
the �z= �1 unperturbed ground states. This proves the exis-
tence of a finite tunneling amplitude at zero bias. To illustrate
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this point, consider tunneling at T=0 not between two indi-
vidual states but rather between two systems with density of
states �1�E� and �2�E�, respectively, to model local tunneling
between two Fermi liquids. The tunneling current for
V�EF is then given by

I�V� � �
0

V−EF

dE1�1�EF + E1�

��
0

E1

dE2�2�EF + E2��−1�E1 − E2� . �3.9�

If we assume particle-hole symmetry, � j�EF+Ej�=� j�EF
−Ej� for j=1,2, we expect the tunneling current to be odd
with respect to V−EF. In addition, if we assume tunneling
into a constant density of states �1�EF+E1�=�1 and �2�EF
+E2�=�2 and combine the tunneling results for V�EF and
V�EF, then the tunneling current is

I�V� � �1�2�2��̃2�V − EF�
1 +
1

�32�2� �V − EF�
�

�
+ O� �V − EF�2

���
�� . �3.10�

IV. SUMMARY

In general, the zero-bias anomaly in tunneling into 2DESs
reflects the qualitative effects of Coulomb interactions on the

tunneling process. While these effects are interesting in their
own right, in the context of VSTM they could represent a
barrier to obtaining information on single-particle density of
states. Through an explicit calculation we have shown that in
a system where in-plane transport is ballistic and screening is
efficient, tunneling is only modestly suppressed by Coulomb
effects even in the limit of zero bias. This implies that VSTM
will be capable of probing the low energy physics of clean
2DESs through tunneling. The main purpose of the current
paper was a proof of principle, hence we limited ourselves to
the simplest possible application of VSTM. There are many
other systems to which VSTM might be applied where other
considerations may be necessary, including tunneling in a
magnetic field and tunneling into a non-Fermi liquid. These
issues will be the subjects of future studies.

ACKNOWLEDGMENTS

The authors would like to thank Adam Sciambi, Matt Pel-
liccione, and Mike Lilly for valuable discussions. The Virtual
STM concept was developed with support from the Center
for Probing the Nanoscale, an NSF NSEC, Grant No. PHY-
0425897. The present work was supported by the Depart-
ment of Energy, through SIMES at the SLAC National Ac-
celerator Laboratory, under Grants No. DE-FG02-
06ER46287 and No. DE-AC02-76SF00515. K. Luna
acknoweldges support from Lucent Bell Laboratories.

*Permanent address: Department of Physics, Cornell University,
Ithaca, New York 14853, USA.
1 A. Sciambi, M. Pelliccione, M. Lilly, S. Bank, A. Gossard, L.

Pfeiffer, K. West, and D. Goldhaber-Gordon, arXiv:1008.0668
�unpublished�.

2 A. Sciambi, M. Pelliccione, S. R. Bank, A. C. Gossard, and D.
Goldhaber-Gordon, Appl. Phys. Lett. 97, 132103 �2010�.

3 X. P. A. Gao, G. S. Boebinger, A. P. Mills, Jr., A. P. Ramirez, L.
N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 086402 �2005�.

4 C. F. Hirjibehedin, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and
K. W. West, Phys. Rev. B 65, 161309�R� �2002�.

5 E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod.
Phys. 73, 251 �2001�.

6 B. Spivak and S. A. Kivelson, Ann. Phys. 321, 2071 �2006�.
7 B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 �2004�.
8 G. Sambandamurthy, R. M. Lewis, Han Zhu, Y. P. Chen, L. W.

Engel, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev.
Lett. 100, 256801 �2008�.

9 A. Yacoby, T. A. Fulton, H. F. Hess, L. N. Pfeiffer, and K. W.
West, Solid State Commun. 111, 1 �1999�.

10 M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R.
Fleischmann, E. J. Heller, K. D. Maranowki, and A. C. Gossard,
Nature �London� 410, 183 �2001�.

11 G. Finkelstein, P. I. Glicofridis, R. C. Ashoori, and M. Shayegan,
Science 289, 90 �2000�.

12 S. Ilani, J. Martin, E. Tetelbaum, J. Smet, V. Umansky, D. Ma-
halu, and A. Yacoby, Nature �London� 427, 328 �2004�.

13 M. T. Woodside, C. Vale, P. L. McEuen, C. Kadow, K. D. Ma-
ranowski, and A. C. Gossard, Phys. Rev. B 64, 041310�R�
�2001�.

14 M. P. Jura, M. A. Topinka, L. Urban, A. Yazdani, H. Shtrikman,
L. N. Pfeiffer, K. W. West, and D. Goldhaber-Gordon, Nat.
Phys. 3, 841 �2007�.

15 J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett.
57, 2324 �1990�.

16 S. Levitov and A. V. Shytov, JETP Lett. 66, 214 �1997�.
17 B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett.

44, 1288 �1980�.
18 R. C. Dynes and J. P. Garno, Phys. Rev. Lett. 46, 137 �1981�.
19 Y. Imry and Z. Ovadyahu, Phys. Rev. Lett. 49, 841 �1982�.
20 R. Silbey, Annu. Rev. Phys. Chem. 27, 203 �1976�.
21 In addition to the distance between the two 2DESs, a, other

length scales which could affect the short-distance physics in-
clude kF

−1 and the transverse thickness of the 2DESs. We assume
that these other length scales are at least not much longer than a
so that, since we are focusing on long-distance physics, we can
treat a as the only short-distance cutoff.

22 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 �1987�.

LUNA et al. PHYSICAL REVIEW B 82, 235317 �2010�

235317-4

http://arXiv.org/abs/arXiv:1008.0668
http://dx.doi.org/10.1063/1.3492440
http://dx.doi.org/10.1103/PhysRevLett.94.086402
http://dx.doi.org/10.1103/PhysRevB.65.161309
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1103/RevModPhys.73.251
http://dx.doi.org/10.1016/j.aop.2005.12.002
http://dx.doi.org/10.1103/PhysRevB.70.155114
http://dx.doi.org/10.1103/PhysRevLett.100.256801
http://dx.doi.org/10.1103/PhysRevLett.100.256801
http://dx.doi.org/10.1016/S0038-1098(99)00139-8
http://dx.doi.org/10.1038/35065553
http://dx.doi.org/10.1126/science.289.5476.90
http://dx.doi.org/10.1038/nature02230
http://dx.doi.org/10.1103/PhysRevB.64.041310
http://dx.doi.org/10.1103/PhysRevB.64.041310
http://dx.doi.org/10.1038/nphys756
http://dx.doi.org/10.1038/nphys756
http://dx.doi.org/10.1063/1.103882
http://dx.doi.org/10.1063/1.103882
http://dx.doi.org/10.1134/1.567489
http://dx.doi.org/10.1103/PhysRevLett.44.1288
http://dx.doi.org/10.1103/PhysRevLett.44.1288
http://dx.doi.org/10.1103/PhysRevLett.46.137
http://dx.doi.org/10.1103/PhysRevLett.49.841
http://dx.doi.org/10.1146/annurev.pc.27.100176.001223
http://dx.doi.org/10.1103/RevModPhys.59.1

