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Corner Junction as a Probe of Helical Edge States
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We propose and analyze interedge tunneling in a quantum spin Hall corner junction as a means to probe
the helical nature of the edge states. We show that electron-electron interactions in the one-dimensional
helical edge states result in Luttinger parameters for spin and charge that are intertwined, and thus rather
different from those for a quantum wire with spin rotation invariance. Consequently, we find that the four-
terminal conductance in a corner junction has a distinctive form that could be used as evidence for the

helical nature of the edge states.
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Introduction.—The better understanding of topological
phases in condensed matter physics, attained through the
comprehensive study of the quantum Hall effect, has led to
the search for other forms of topological states in the
absence of applied magnetic fields [1]. In particular, the
quantum spin Hall (QSH) effect has been proposed theo-
retically in various systems with time reversal (TR) sym-
metry and spin-orbit interactions [2-6]. A recent
experiment [7] has provided evidence for transport prop-
erties that are consistent with those associated with the
QSH effect: independence of the conductance from sample
width, in line with transport taking place at the edges, and
sensitivity to an external magnetic field, which breaks TR
symmetry and destroys the QSH.

The presence of a bulk gap and gapless edge states is a
distinctive signature of QSH insulators as new topological
states of matter [1-3,8—11]. For a two-dimensional (2D)
system, these edge states are expected to form the helical
Luttinger liquid (HLL), where opposite spin modes coun-
terpropagate [12,13]. However, to the best of our knowl-
edge, experimental results or proposals for experiments
that can directly confirm the helical nature of the edge
states and distinguish them from ordinary Luttinger liquids
(LLs) are still lacking.

In this Letter, we propose and analyze a corner junction
with a single point contact as a minimalistic but concrete
setting for probing the helical nature of the QSH edge
states. In particular, we find that the helicity constraint
allows for a stable fixed point (in the renormalization group
sense) corresponding to a charge insulator and spin con-
ductor for tunneling across the point of contact. This fixed
point arises in the regime of sufficiently large repulsive
electron-electron interactions, and could be experimentally
accessed by choosing device parameters, such as the thick-
ness of the HgTe/(Hg, Cd)Te QSH insulator samples of
Refs. [14-16]. We derive the associated four-terminal lin-
ear conductance tensors through a formal ‘““folding proce-
dure” which maps the corner junction of a pair of HLLs
into a junction of semi-infinite spinful LLs. The nontrivial
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spin tunneling fixed point uniquely allows for a peculiar
flow of charges: currents flow into two terminals biased at
intermediate voltages not only from the terminal with the
highest bias but also from the terminal with the lowest bias.
Such four-terminal conductance is a characteristic of a
corner junction of HLLs and can thus be used as unambig-
uous evidence for HLL behavior of the QSH edge states.
Geometry.—The corner junction we propose, which can
be fabricated in a HgTe/(Hg, Cd)Te quantum well [14—
16], is the four-terminal geometry shown in Fig. 1. The
HLL edges are at the boundaries of the bulk QSH insulator,
which is shown in pale grey in the figure. The two sets of
HLL edge states (one running from terminal 1 to 2, and the
other from 3 to 4) are brought close to one another at their
corners, x;, = 0, forming a point contact between two
QSH edges, where tunneling can occur. Four leads, where
voltages V; can be applied and currents /; can be measured
(i=1, 2, 3, 4), contact the sample before and after the

FIG. 1 (color online). Proposed geometry of a point contact
device for probing the helical nature of QSH edge states. The
painted (pale grey) area defines the bulk of the QSH insulator.
The red (solid) line represents the up-spin right-movers while the
blue (dashed) line represents the down-spin left-movers for both
edges. Electrons can tunnel between the two edges at x;, = 0,
where the corners come into close proximity. There are four
contact leads, where voltages V; can be applied, before and after
the tunneling point.
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junction. The currents are defined as positive when flowing
out of the leads and into the edges. Our discussion will
focus only on the effects attributed to the point contact.
However, in a QSH sample, there should be additional
pairs of HLL edges, one that connects leads 1 and 4, and
another that connects leads 2 and 3. For extracting the
significant features due to the point contact alone, one
can either isolate the region of interest with additional
contacts or take the contribution of the extra HLLs into
account by including a conductance e?/h between the
appropriate leads.

Folded picture of the helical Luttinger liquids.—The
HLL has only half the degrees of freedom of a conventional
1D system [12,13], because helicity correlates spin polar-
ization with the direction of propagation. This helicity
distinguishes the HLL from other states where the degrees
of freedom are reduced by half, such as the spinless LL. and
the chiral LL in the quantum Hall effect. Consider a HLL
consisting of right-movers (left-movers) g (i) that
carry up (down) spin. The linearized Hamiltonian of the
HLL, in its noninteracting limit, can be cast as

Ho = —vp [[dx(hyio b — Wl )

where TR symmetry forbids all TR-odd perturbations;
single particle backscattering operators, which open up a
mass gap, are thus excluded [12,13]. The chiral interaction
for the same species can be written as

A
Hch=74[dx(¢§¢m¢fef¢m+ N

where A4 is the interaction constant. There are two TR
invariant nonchiral interactions, the forward scattering and
the umklapp scattering. We shall neglect the umklapp
scattering, which is important only for certain commensu-
rate fillings [12,13]. The Hamiltonian of the forward scat-
tering reads

How = o [ dx(lywa ] ), 3)

with A, as the interacting constant. Observe that the spin
degrees of freedom are redundant; hence, one can effec-
tively treat the HLL as a spinless LL system and define the
boson fields ¢ = ¢g; + ¢y and 0 = ¢ | — Pg within
the standard bosonization procedure. The bosonized
Hamiltonian, H = H, + H, + Hy,, reads

n=2 dx[;(axey veoer] @

where the velocity v = vpy/(1 + Ay/27vp)> — (Ay/27v5)?
and g = JQmvp + Ay — A)/Qavp + Ay + Ay) is the
Luttinger parameter. Hence, the behavior of a HLL con-
sisting of one pair of edge states is controlled by a
Luttinger parameter g, and it is similar to a spinless LL.
However, unlike a spinless LL, a HLL is protected

from localization by TR symmetry, which forbids back-
scattering.

Although the HLL is effectively a spinless LL in an
infinite wire, for the particular corner junction geometry
depicted in Fig. 1, it is convenient to map the HLL into a
spinful LL in a semi-infinite wire. Let us introduce the
following mapping for the edge states indexed by o = 1, 2
that come to the corner at x, = 0: gbi‘l(xa) — zﬁgl(—xa)
and ¢ 3 (x,) = ¥ (=x,) for x, < 0. All fields (g, g
i, and 7)) are thus effectively defined for a semi-
infinite (x, > 0) wire, owing to a proper boundary condi-
tion (BC). Then the charge and spin boson fields in the
standard bosonization scheme are defined as ¢, = (¢; +

¢1)/\/§, e <P1)/\/§ and likewise for the dual
fields 6., where ¢, = ¢r, + ¢, and 0, = ¢, —
¢r o for o =1, | . Finally, the Hamiltonian for the two
copies (a = 1, 2) of edge states can be written as

v 1
H=) * —(8,05)* + g,(0 M],
> / >0dx[ga( B8 + 20,087 | (5)

where a = ¢, s represent the charge and spin degrees of
freedom, the Luttinger parameters g. = g = (g,)”!, and
the normalized velocity v, = v, = v. Hence, the folding
procedure we describe above maps the corner junction
between a pair of HLLs into a junction of two semi-infinite
spinful LLs with the constraint, g. X g, = 1, a manifesta-
tion of the helical nature of the QSH edge states. This
relation is in stark contrast to the one in the simple LL, for
which g, = 1 is required by spin rotation invariance.
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FIG. 2 (color online). (a) The phase diagram of a junction of
two spinful LL quantum wires. The black curve indicates the
trajectory that respects the HLL constraint g. X g, = 1. The
label C stands for conducting while the label I stands for
insulating phase. The adjacent labeling, AB, indicates the phase
A and phase B for the charge and spin degrees of freedom,
respectively. Depending on the detailed structure of the point
contact, both CC and II fixed points can be stable at low
energies, and this is represented in the dashed area. (b) shows
the phase diagram of the point contact between two HLL edge
states in terms of g., obtained by following the g. X g, =1
trajectory in (a).
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Low energy fixed points.—For arbitrary values of g, g,
a spinful LL with a single tunneling center was analyzed
using a perturbative renormalization group [17,18] and in
terms of boundary conditions imposed by the tunneling
center [19]. One can take the g. X g, = 1 parametric line
and follow it on the (g., g,) plane, and use the results for
the spinful LL in Refs. [18,19]. As depicted in Fig. 2(a),
transport through the point contact is renormalized to the
charge conductor and spin insulator (CI) fixed point when
g. > 2, while it is renormalized to the charge insulator and
spin conductor (IC) fixed point when g, < 1/2. In between
these phases, when 1/2 < g, < 2, the system can be either
a charge and spin conductor (CC) or a charge and spin
insulator (II), depending on the detailed structure of the
point contact. The phase diagram of the system as a func-
tion of g, is plotted in Fig. 2(b).

Strikingly, two fixed points, IC and CI, which are un-
attainable for an ordinary LL with g, = 1, are accessible
for the HLL by tuning the interaction parameter g.. In
particular, transport through the corner junction of two
HLL renormalizes into the IC low energy fixed point
with strong repulsive interaction, g < 1/2. Consequently,
by measuring the charge transport properties of a corner
junction of two HLL edge states, one can clearly discrimi-
nate between the HLL and the LL by the charge transport
proporties: in the latter, renormalization leads to the fixed
point with no current flow across the tunneling junction for
g < 1. Also, it is worthwhile to compare the corner junc-
tion to a similar experimental setup, a point contact be-
tween two chiral LL edge states supported by the quantum
Hall liquid. There, depending on the details of the point
contact and the filling fraction, only two phases, corre-
sponding to the weak and the strong tunneling limit, are
possible. Hence, the renormalization into the IC fixed point
for strong repulsive interactions is a distinctive hallmark of
the HLL.

It is rather nontrivial to calculate the actual value of g
from microscopic parameters. However, the relation g =
[1+ U/(2Er)]""/?, where Ej. is the Fermi energy and U is
the characteristic Coulomb energy of the system [18],
provides a rough estimate. For a HgTe/CdTe quantum
well with width w =7 nm, U = ¢*/w = 0.2 eV, and E
is approximately the band gap 40 meV [16]. Then, the
Luttinger parameter is estimated to be g = 0.53 and can be
adjusted by changing the width of the quantum well.

Conductance tensor—Now we discuss how the terminal
transport measurements can reveal the nature of the differ-
ent fixed points. The conductance tensor, G; s defined as
the current response to the applied voltage I; = G;;V;, can
be calculated using the Kubo formula with the proper
identification of the conformally invariant BCs associated
to the low energy fixed points [20,21].

Generically, the BCs can be encoded into rotation ma-
trices R, that relate the left- and right-movers, of the
charge and spin degrees of freedom separately, through
P = ’Rf(s)¢fc(s), where a, B =1, 2 are the edge

indices. Notice that only combinations of two types of
BCs appear in this problem: insulator (Neumann) BC and
conductor (Dirichlet) BC, and the corresponding rotation
matrices are given by

1 0 0 1
Ré(s)=<0 1); Rf(s)=<1 0). ©)

However, for computing G;; for each BC, it is most con-
venient to identify the 4 X 4 rotation matrix that relates the
incoming fields ®; = (¢} ., ¢} |, 7, 7)) to the out-
going fields @ = (dy |, pp Px» bzy)" in each channel,
for a given BC: ®, = R5CD,.

After some algebra, the rotation matrices R/¢ and R’
for IC and CI BCs can be derived from the combinations of
R, in Eq. (6) as

ST
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respectively. Then, the conductance tensors G/¢ and G/
can be derived from the Kubo formula and written in a
compact form [21,22]:

2
e
G?,C = gﬁ(&‘j - Rfi-c)- (8)

These resulting conductance tensors satisfy the constraints
2..Gij = 0and 3 ;G;; = 0 due to current conservation and
to the fact that currents vanish when all four applied
voltages are equal, respectively. Also, with the contact
resistance between the leads and the edge states taken
into account, the overall conductance will take the same
form as in Eq. (8) but with a simple substitution g — 1.
Proposed measurement.—Notice that the conductance
tensors of the IC and CI fixed points, obtained from
Egs. (7) and (8), show the twined response of the four
terminals. For the IC fixed point, the current response is
only controlled by the difference between two “‘spin po-
tentials,” V! and V2, associated with each edge, where
Vi=V, -V, and V2 = V; — V,. Since neither charge
nor spin currents flow across the junction when V! = V2,
the two edges are effectively decoupled, and the currents
are determined solely by the voltage drop at each edge, for
instance I, = —I, = ¢*(V, — V,)/h. On the other hand,
when V! = —V2 only a pure spin current, i.e., an ex-
change of up and down spins, takes place across the
junction, and thus no net charge current flows into any
terminal. Blending the decoupled edge and the pure spin
current channels results in exotic current responses that can
only occur in a helical edge state, which can support
arbitrary “spin potentials.” Specifically, in the setup shown
in the Fig. 3, when a positive voltage V; and a negative
voltage V3 > —V; are applied to terminals 1 and 3, re-
spectively, with leads 2 and 4 grounded, a current /3 =
e?(V43 + V,)/2h will flow out from lead 3, which has the
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FIG. 3 (color online). Proposed measurement for detecting the
IC fixed point and the helical nature of the QSH edge states. A
positive voltage V| and a negative voltage V; are applied to leads
1 and 3, such that V; > |V;|, while leads 2 and 4 are grounded.
The arrows indicate the direction of the current flow and the
quantized conductance ¢?>/h = 1. Notice that currents flow out
from lead 3, even though it has the lowest applied voltage.

lowest applied voltage. [Notice that this does not violate
thermodynamic principles, since the dissipated power at
the junction can only be non-negative, as the eigenvalues of
the conductance tensors in Eq. (8) computed with Eq. (7)
are larger or equal to zero.] This counterintuitive result
would be a smoking gun evidence, out of the corner
junction measurement, of the helical nature of the edge
states supported by the QSH insulator.

As in the case of other types of LLs, the currents through
the corner junction of HLLs will acquire power law cor-
rections at finite temperatures and voltages: 6G(T) ~
T2@nin =D and SI(V) ~ V2w~ [18]. A, is the scaling
dimension of the leading irrelevant boundary operators that
tend to drive the system away from the fixed point, and
varies according to the fixed point and Luttinger parameter.
At the IC fixed point, we find that A ;, = 1/(2g,) for all
range of g. < 1/2. At the I and CC fixed points, A, =
2g.or A, = (g, + g-1)/2, depending on the value of g,
within the interval 1/2 < g, < 1. Since the IT and CC fixed
points are most likely realized in a weakly interacting limit,
examining the power law corrections in transport data is
already a step towards demonstration of HLLs through
corner junction, which can be explicitly shown in the
strongly interacting regime with the IC fixed point.

Broken S, symmetry.—Throughout our discussions, we
have assumed that the polarizations of the spins in the two
edges are the same, which can be achieved in a HgTe
quantum well sample if the spin polarization is tied to
the crystalline directions. However, the polarizations of
spin in two edges can be in general different, and the
stability of the low energy fixed point may be altered
accordingly. We found that the II, CC, and CI fixed points
still remain stable. On the other hand, tunneling processes
that were originally forbidden due to the spin conservation
destabilize the IC fixed point. For the range of g < 1/2, we
now find three unstable fixed points (including the IC fixed
point), each unstable along the direction pointing to the

other two, which suggest the existence of intermediate
fixed points. What the stable fixed point is when S, is not
a good quantum number is an interesting open problem.
Summary.—We proposed and analyzed a corner junction
in a QSH insulator as a simple yet rather effective test bed
of the helical properties of the edge states and the non-
trivial topological nature of the QSH insulator. We found
that an unmistakable IC fixed point is accessible when
electron-electron interactions are sufficiently repulsive.
This fixed point can be attained by engineering
HgTe/HgCd quantum wells so as to enhance the repulsive
interactions within a single HLL. The four-terminal con-
ductance tensor associated to the IC regime has a telltale
sign: currents can flow out of a reservoir with the lowest
bias. If experimentally observed, this unique conductance
tensor can provide unambiguous evidence for the helical
nature of the edge states of topological QSH insulators.
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