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We study the scaling behavior of the entanglement entropy of two-dimensional conformal quantum critical
systems, i.e., systems with scale-invariant wave functions. They include two-dimensional generalized quantum
dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related
gauge theories. We show that under quite general conditions, the entanglement entropy of a large and simply
connected subsystem of an infinite system with a smooth boundary has a universal finite contribution, as well
as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is
computable in terms of the properties of the conformal structure of the wave function of these quantum critical
systems. The calculation of the universal term reduces to a problem in boundary conformal field theory
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I. INTRODUCTION

The nonlocal correlations of a quantum-mechanical sys-
tem are encoded in the behavior of the entanglement proper-
ties of its wave functions. A pure quantum state of a bipartite
system A�B defines a mixed state in the observed region A
obtained from tracing out the degrees of freedom in the un-
observed region B. The nonlocal correlations connecting re-
gions A and B are encoded in the behavior of the von Neu-
mann entanglement entropy, S=−Tr �A ln �A, where �A is the
reduced density matrix of region A. The entanglement en-
tropy of a local quantum field theory relativistic or not is
known to exhibit an “area law” scaling of the form S
���D−1 in spatial dimensions D�1 where � is a nonuni-
versal coefficient.1,2 There has been growing interest in the
scaling behavior of the entanglement entropy at quantum
critical points and in topological phases. The entanglement
entropy of quantum critical systems in D�1 should contain
universal subleading terms, whose structure for a general
quantum critical system is not yet known.

The scaling behavior of the entanglement entropy has
only been studied in detail in quantum critical systems in
D=1 space dimension. Such systems are described by a �1
+1�-dimensional conformal field theory �CFT�. In a
1+1-dimensional CFT, the entanglement entropy of a sub-
system A of linear size � of an otherwise infinite system �i.e.,
of linear size L→�� obeys a logarithmic scaling law,3–7 S
� c

3 ln� �
a �+¯, where c is the central charge of the CFT and a

is the short-distance cutoff. There has been a number of stud-
ies on topics related to this one-dimensional �1D� logarith-
mic scaling form. For instance, a possible connection be-
tween this result and gravitational physics was suggested.8 A
similar logarithmic scaling behavior was found at infinite
disorder fixed points of 1D random spin chains.9,10 The quan-
tum entanglement of quantum impurity systems has also
been studied.11–15

In this paper, we consider the universal scaling form of
the entanglement entropy at two-dimensional �2D� confor-
mal quantum critical points �QCPs�—two-dimensional quan-
tum critical systems with scale-invariant many-body wave

functions. At a 2D conformal QCP, equal-time correlators of
local operators coincide with the correlation functions of an
appropriate 2D classical system at criticality �which is de-
scribed by an Euclidean 2D CFT�.16 The entanglement en-
tropy of 2D conformal QCPs was first considered in Ref. 17,
where a scaling form was found: S=��− c

6 ����ln�� /a�+¯,
where c is the central charge of the 2D Euclidean CFT asso-
ciated with the norm squared of the wave function and �� is
the change in the Euler characteristic �, ��=�A�B−�A−�B.
Notice for a region A�B with a smooth boundary, ��=0
and hence the logarithmic term vanishes. Hence, if region A
has a smooth boundary, there is no universal logarithmic
term. In this case, we will show that instead there is a finite,
O�1�, universal term �QCP in the entanglement entropy at
these quantum critical points, i.e.,

SQCP = �� + �QCP + ¯ . �1�

Through explicit calculations and using general arguments
based on CFT, we will show that �QCP has a topological
meaning in the sense that it is determined by the contribu-
tions of the winding modes of the underlying CFT.

In a topological phase in 2D, the entanglement entropy
scales as18,19

Stopo = �� − �topo + O��−1� , �2�

where � is a nonuniversal coefficient and �topo, the topologi-
cal entanglement entropy, is a topological invariant, the loga-
rithm of the so-called total quantum dimension D of the
underlying topological field theory describing the topological
phase.18,19 Topological phases have nontrivial ground-state
degeneracies on surfaces of nontrivial topology. The topo-
logical entanglement entropy �topo also depends on the global
topology of the manifold, and on surfaces with nontrivial
topology, on the degenerate ground state on that surface.20

Although superficially similar, the finite universal contri-
butions to the entanglement entropy in topological phases
and conformal quantum critical points, �topo and �QCP, have a
different origin and structure. In the case of a topological
phase, �topo is in general determined by the modular S matrix
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of the topological field theory of the topological phase.18–20

This modular S matrix governs the transformation properties
of the �degenerate� ground states of the topological phase on
a torus under modular transformations, 	→−1 /	, where 	 is
the modular parameter of the torus.21 However, we show
below that for a general conformal quantum critical point,
whose ground-state wave function is given by the Gibbs
weights of a Euclidean rational unitary CFT, the universal
term �QCP is determined by the modular S matrix associated
with the norm squared of the wave function. Thus, the modu-
lar S matrix of the topological phase and that of the wave
functions of 2D conformal quantum critical points have a
conceptually different origin. In particular, in all the cases we
checked here, �QCP and �topo contribute with opposite signs
to their respective entanglement entropies, as implied by the
conventions we used in Eqs. �1� and �2�.

We will show that when the logarithmic terms in the en-
tanglement entropy cancel, the finite terms �QCP are univer-
sal and are determined not only by the central charge but also
by the restrictions on the states imposed by the compactifi-
cation conditions. Furthermore, the form of the result for the
entanglement entropy of Eq. �8� implies a connection with
boundary CFT, as developed by Cardy.22,23 Thus, in addition
of it being determined by the central charge c, it must also
depend on the operator content of the CFT. For the same
reason, the structure of Eq. �8� also suggests a direct connec-
tion between this problem and the Affleck-Ludwig boundary
entropy of 1D quantum CFTs.24

The paper is organized as follows. In Sec. II we apply this
approach first to the simpler case of the quantum Lifshitz
model �and the related quantum dimer models, �QDMs�� on
planar, cylindrical, and toroidal geometries. These results ap-
ply to the QCPs of �generalized� quantum dimer model on
bipartite lattices25–30 and in quantum eight-vertex models.16

Through explicit calculations for various geometries, we
show that that, when the logarithmic terms in the entangle-
ment entropy cancel, and that the subleading finite terms
�QCP are universal, determined not only by the central charge
but also by the restrictions imposed by the compactification
conditions. In Sec. III we generalize this result to all 2D
conformal QCPs whose scale-invariant wave functions have
norms that are the partition functions of 2D Euclidean ratio-
nal CFTs �RCFTs�, CFTs with a finite number of primary
fields.31,32 More specifically, we show that the finite term in
the entanglement entropy of the 2D wave function is deter-
mined by the change in the Affleck-Ludwig boundary en-
tropy of the 1D CFT—a quantity determined by the modular
S matrix of the associated CFT and by the coefficients in the
fusion rules. We also discuss specific examples of this class
including 2D quantum loop models33 which, with the naive
inner product, are known to be quantum critical.34,35 We also
briefly discuss the quantum net models.33–36 In Sec. IV we
conclude with a summary and a discussion on open ques-
tions. In particular, we comment on the implications of our
results to the nature of related topological phases.

II. QUANTUM LIFSHITZ MODEL UNIVERSALITY CLASS

The quantum Lifshitz model16 �QLM� in two space di-
mensions is defined by the following Hamiltonian with an
arbitrary parameter k:

H =� d2x�
2

2
+

1

2
� k

4�
	2

��2��2
 , �3�

where � is a scalar field and 
= �̇ is its canonical momen-
tum conjugate to �. QLM Hamiltonian Eq. �3� defines a
class of QCPs with dynamic critical exponent z=2, and a
continuous parameter k.

This remarkable property of the model is evident in the
exactly known wave function for the ground state �GS�,
which is a superposition of all field configurations ��x ,y�
with the configuration dependent weight16

GS��� = ����GS� =
1
�Z

e−S���/2, �4�

with

S��� =� d2x
k

4�
��� ��x��2 �5�

and the norm squared of the state

Z = �GS�2 =� D�e−S���. �6�

Notice Z is identical to the partition function for the Gauss-
ian model, which defines free boson Euclidean CFT,37 albeit
with the “stiffness” k. Hence Eq. �3� defines an infinite class
of 2D conformal QCPs all associated with free boson CFTs.

The QLM can be viewed low energy effective-field theory
capturing universal aspects of various microscopic lattice
models with � playing the role of coarse-grained height
field16,38,39 with the “stiffness” k determined by the appropri-
ate “microscopic” coupling constants.16,29 For such a map-
ping to work, the constraints of the lattice models should be
build in through compactification of the boson field � by
demanding all physical operators to be invariant under the
shift of �→�+2�r or equivalently all physical operators to
take the form of vertex operators ein�/r for integer n. In Sec.
II C we will discuss specific examples of this mapping cor-
responding to particular values of k using the convention of
fixing r=1. The examples will include so-called Rokhsar-
Kivelson point �RK� of the quantum dimer model25 and its
generalizations30,40,41 and the quantum eight-vertex model16

special choices of the Baxter weight.42 Since k can be varied
in the QLM, this theory has an exactly marginal operator,
resulting in continuously varying critical exponents �scaling
dimensions� of the allowed �vertex� operators.41

A. Entanglement entropy and partition functions for 2D
conformal QCPs

To investigate the universal finite terms in the entangle-
ment entropy at 2D conformal QCPs, we will rely on the
approach described in the work of Fradkin and Moore.17

They showed that tr �A
n , where �A is the �normalized� reduced

density matrix of a region A, with A�B separated by the
boundary �, for the ground state 0 on A�B, is given by
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tr �A
n =

Zn

Zn = �ZAZB

ZA�B
	n−1

. �7�

Here Zn is the partition function of n copies of the equivalent
2D classical statistical mechanical system satisfying the con-
straint that their degrees of freedom are identified on the
boundary �, and Zn is the partition function for n decoupled
systems. The partition functions on the right-hand side �rhs�
of Eq. �7� are ZA= �0

A�2 with support on region A and �0
B�2

with support in region B, both satisfying generalized Dirich-
let �i.e., fixed� boundary conditions on � of A and B, and
ZA�B= �0�2 is the norm squared for the full system. The
entanglement entropy S is then obtained by an analytic con-
tinuation in n,

S = − tr��A ln �A� = − lim
n→1

�

�n
tr �A

n = − log�ZAZB

ZA�B
	 . �8�

Hence, the computation of the entanglement entropy is re-
duced to the computation of a ratio of partition functions in a
2D classical statistical mechanical problem, a Euclidean CFT
in the case of a critical wave function, each satisfying spe-
cific boundary conditions.

In order to construct tr �A
n , we need an expression for the

matrix elements of the reduced density matrix �A��A���A�.
Since the ground-state wave function Eqs. �4� and �5� is a
local function of the field ��x�, a general matrix element of
the reduced density matrix is a trace of the density matrix of
the pure state GS��� over the degrees of freedom of the
“unobserved” region B, denoted by �B�x�. Hence the matrix
elements of �A take the form

�A��̂A���A� =
1

Z
� �D�B�e−�1/2SA��A�+1/2SA���A�+SB��B��,

�9�

where the degrees of freedom satisfy the boundary condition
at the common boundary �

BC�:�B�� = �A�� = ��A��. �10�

Proceeding with the computation of tr �A
n , it is immediate to

see that the matrix product requires the condition �i
A=�i−1�A

for i=1, . . . ,n, and �n�
A=�1

A from the trace condition. Hence,
tr �A

n takes the form

tr �A
n �

Zn

Zn =
1

Zn�
BC�

�
i

D�i
AD�i

B

�exp�− �i=1

n
�S��i

A� + S��i
B��� �11�

subject to the boundary condition BC� of Eq. �10�. Notice
that the numerator Zn is the partition function on n systems
whose degrees of freedom are identified in � but are other-
wise independent. Also notice the absence of the factors of
1/2 in the exponentials of Eq. �11�.

The other important consideration is that the compactifi-
cation condition requires that two fields that differ by 2�r be
equivalent. Hence, the boundary condition of Eq. �10� is de-
fined modulo 2�r. �Equivalently, the proper form of the de-
grees of freedom is ei�.� This means that one can alterna-

tively define Zn as a partition function for n systems which
are decoupled in the bulk but have a boundary coupling of
the form �in the limit ��→�, which enforces the boundary
condition�

S� = − �
�

���
i=1

n

cos��i − �i+1� . �12�

Here the fields �i extend over the entire region A�B. Thus,
this problem maps onto a boundary CFT for a system with n
“replicas” coupled only through the boundary condition on
the closed contour �, the boundary between the A and B
regions.

For the special case of the free scalar field, one can sim-
plify this further by taking linear combinations of the replica
fields. Then the condition that the scalar fields �i agree with
each other on � can be satisfied by forming n−1 relative
coordinates �i��i−�i+1�i=1, . . . ,n−1� that vanish �mod
2�r� on �, and one “center-of-mass coordinate” field �
� 1

�n
�i=1

n �i that is unaffected by the boundary � �reflecting
the fact that nothing physical takes place at ��. Hence, the
computation of tr �A

n reduces to the product of two partition
functions:

�1� The partition function for the “center-of-mass” field �;
since � does not see the boundary �, this is just the partition
function ZA�B for a single field in the entire system.

�2� The partition function for the n−1 fields �i which are
independent from each other and vanish �mod 2�r on ��. We
denote this by �Z�

D�n−1. However, the fields �i on the A and B
regions are effectively decoupled from each other. Hence,
this partition function further factorizes to Z�

D=ZA
DZB

D, where
ZA

D and ZB
D are the partition functions for a single field � on

A and B, respectively, satisfying in each case Dirichlet
�fixed� boundary conditions �mod 2�r� at their common
boundary �.

Thus, we can write the trace tr �A
n as

tr �A
n =

�Z�
D�n−1ZA�B

ZA�B
n = �Z�

D

ZF
	n−1

= �ZA
DZB

D

ZA�B
	n−1

. �13�

Here the denominator factor, ZA�B
n comes from the normal-

ization factors, and represents the partition function over the
entire system. The entanglement entropy is then17

S = − log ZA
D − log ZB

D + log ZA�B � FA
D + FB

D − FA�B,

�14�

which, as indicated in the rhs of Eq. �14� reduces to the
computation of the free energies FA

D,, FB
D and FA�B, for the

equivalent 2D Euclidean CFT on regions A and B, each sat-
isfying Dirichlet �fixed� boundary conditions on the common
boundary �, and on the full system, A�B, respectively.

The behavior of the free energy of a CFT as a function of
the system size � has been studied in detail. The divergent
terms, as �→�, have the form43–45

F��� = f0�2 + �� −
c

6
� ln��

a
	 + O�1� �15�

provided the boundary � is smooth �and differentiable�.
Here, f0 and � are two nonuniversal quantities and a is the
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short-distance cutoff; c and � are, respectively, the central
charge of the CFT and the Euler characteristic of the mani-
fold. It follows from this result that the entanglement entropy
for region A takes the form17

S = �� −
c

6
����ln��

a
	 + O�1� �16�

provided the boundary � is smooth. In all the geometries we
discuss, the change in the Euler characteristic vanishes, ��
=0, and there is no logarithmic term. However we will show
below that, if the logarithmic terms cancel, there exist a uni-
versal finite O�1� term, as well as other universal depen-
dences on the geometry �such as aspect ratios�. We will now
extract these universal finite terms.

B. Entanglement entropy of the quantum Lifshitz universality
class

Here we calculate �QCP at QCPs of the QLM universality
class defined by Eq. �3� for three different geometries: �i� a
cylindrical geometry, �ii� a toroidal geometry, and �iii� a disk
geometry. For the cylinder and disk we assume the Dirichlet
boundary conditions at the open ends. We use the known
results on the free boson partition function �6� for different
topologies and boundary conditions,31,32,46–49 which are nec-
essary for the calculation of entanglement entropy. It is use-
ful to note that the action Eq. �5� for general value of the
“stiffness” k turns into the standard form

S��� =
1

8�
� d2x�����2, �17�

upon a rescaling of the field �2k�=�. If � is compactified
with radius r=1, the rescaled field � has an effective com-
pactification radius R=�2kr2. We find �QCP to depend lin-
early on ln R in all cases we consider.

1. Cylinder

Let us begin by considering first a system on a long cyl-
inder of linear size L and circumference � with L��. Region
A to be observed is a cylinder of length LA and circumfer-
ence �. The complement region, B, is a cylinder of length LB
�see Fig. 1�, also with circumference �. We assume that the
QLM wave function Eq. �4� and hence the associated 2D
partition function Eq. �6� obey the Dirichlet boundary condi-
tions at both ends of the cylinder, A�B.

From Eq. �14�, the entanglement entropy SA=SB�S is
given by

S = − ln ZDD
A �LA,�� − ln ZDD

B �LB,�� + ln ZDD
A�B�LA + LB,�� .

�18�

Here ZDD�L ,�� is the partition function of Eq. �6� for a boson
with compactification radius R on cylinder of length L and
circumference � with Dirichlet boundary conditions on both
ends, which is well known48

ZDD�L,�� = N 1

R

�3�2	

R2	
��q2�

, �19�

where R=�2r2k is the effective compactification radius �as
before� and N is a nonuniversal regularization-dependent
prefactor, responsible for the area and perimeter-dependent
terms in the free energy shown in Eq. �15�. �There are no
logarithmic terms for a cylinder or a torus as their Euler
characteristic � vanishes.� In Eq. �19� 	= i L

� is the modular
parameter, encoding the geometry of the cylinder, and q
=e2�i	. The elliptic theta function �3�	� and the Dedekind eta
function ��q� are given by

�3�	� = �
n=−�

�

qn2/2, ��q� = q1/24�
n=1

�

�1 − qn� . �20�

The important feature of Eq. �19� is the factor 1 /R, the con-
tribution of the winding modes of the compactified boson on
the cylinder with Dirichlet boundary conditions.

Putting it all together, it is straightforward to find an ex-
pression for the entanglement entropy using Eq. �8�. In gen-
eral, the entanglement entropy depends on the geometry
�e.g., the aspect ratios L /�� of the cylinders, encoded in ra-
tios of theta and eta functions. However, in the limit LA��,
in which the length of the cylinders are long compared to
their circumference, the entanglement entropy given by Eq.
�18� and Eq. �19� takes a simple form

S = �� + ln R , �21�

where � is a nonuniversal constant that depends on the
regularization-dependent pre-factor N of Eq. �19�. Hence,
there is a O�1� universal contribution to the entanglement
entropy �QCP=ln R for the cylindrical geometry. The explicit
dependence of �QCP on the effective compactification radius
R=�2kr2 shows that it is determined by the winding modes
of the compactified boson, and thus it is a universal quantity
determined by the topology of the surface. In particular we
find that the universal piece of the entanglement entropy,
�QCP, for a compactified boson is a continuous function of
the radius R, a consequence of the existence of an exactly
marginal operator at this QCP. We find the similar relations
for all topologies we considered. We will come back to this
point in Sec. II C, in the context of several microscopic mod-
els of interest.

2. Torus

We now consider the case in which the full system A�B
is a torus for which the real part of the modulus L /��1, as
shown in Fig. 2. The two subsystems A and B are now two
cylinders, of lengths LA and LB, respectively �L=LA+LB�,

l A B

LA LB

Γ
DirichletDirichlet Dirichlet

FIG. 1. Cylinder.
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both with the same circumference �. We will thus need the
partition function on a torus and on two cylinders �with both
ends of the cylinders obeying Dirichlet boundary condi-
tions.� The trace tr �A

n now becomes

tr �A
n = �ZDD

A �LA,��ZDD
B �LB,��

Ztorus
A�B�L,��

	n−1

. �22�

The partition functions for the two cylinders A and B has the
form of Eq. �19�. The partition function for the torus is31,32

Ztorus�L,�� = �Zcylinder
NN �L

2
,�		2

, �23�

where Zcylinder
NN � L

2 ,�� is the partition function on a cylinder of
length L

2 and circumference �, with Neumann boundary con-
ditions at both ends:

Zcylinder
NN �L

2
,�	 = N�kr2

2

�3�	kr2�
��q2�

, �24�

where 	= i L
� and q=exp�2�i	�.

In the limit LA���a and LB���a, the entanglement
entropy for the toroidal geometry is

S = �� + 2 ln�R2

2
	 . �25�

Hence, for the toroidal geometry, the universal term is
�QCP=2 ln�kr2�=2 ln�R2 /2�. In Eq. �25� � is, once again, a
nonuniversal factor which depends on both the short-distance
regularization and boundary conditions �in fact, it is not
equal to the constant we also called “�” in the entanglement
entropy for the case of the cylinder, Eq. �21��. As was the
case for the cylindrical geometry, in the case of the torus
�QCP is also determined by the contribution of the zero
modes of the compactified boson to the partition functions.
Thus, here too, �QCP depends on the effective boson radius
R=�2kr2. However, the different values of �QCP in Eqs. �25�
and �21� is due to the fact that on the torus all three partition
functions have contributions from the zero modes.

3. Disk

Finally, we compute the entanglement entropy for the disk
geometry, shown in Fig. 3. The line of argument used above
applies here as well. This is the case discussed in Ref. 17,
where it was found that the logarithmic term in the entangle-
ment entropy cancels exactly if the boundary � is smooth.
Here we compute the �subleading� finite universal piece.

To compute the entanglement entropy we need to com-
pute three partition functions, on the two disks A and A�B,
and on the annulus B, all with Dirichlet boundary conditions.
These partition functions were computed in the literature
long ago for an uncompactified boson.46,47 They can be ob-
tained from the partition functions on cylinders, with
Dirichlet-Dirichlet �for the annulus� and Dirichlet-Neumann
�for the disks� boundary conditions by a conformal mapping
w= �

2� ln z, from the z complex plane to the cylinder �labeled
by w�. The partition function for the annulus �region B� of
inner circumference � and outer circumference L �with Di-
richlet boundary conditions� is

ZDD
B �L,�� = N� �

ln�L/��
1

�2kr2

�3� 	B

r2k
	

��qB
2�

. �26�

Except for the factor of 1 /�2kr2, which is due to the zero
modes of the compactified boson, this result agrees with
those of Ref. 47. In Eq. �26� we have used qB=e2�i	B = �

L
�with the modular parameter 	B=− i

2� ln� L
� ��.

Similarly, the partition functions on the two disks, regions
A and A�B, are conformally mapped to two infinitely long
cylinders �as the UV cutoff a→0� with Neumann-Dirichlet
boundary conditions. These partition functions are

Zdisk = 2−5/12�1/4�4�	�
��q2�

, �27�

where q= � a
� �4 , � a

L �4 for regions A and A�B, respectively,
and 	 is their corresponding modular parameter; �4�	� is the
elliptic theta-function

�4�	� = �
n=−�

�

�− 1�nqn2/2. �28�

The resulting entanglement entropy for the planar �disk�
geometry is found to be

S =
1

2
ln� 1

�
ln�L

�
	
 + ln R . �29�

Hence, for the case of the disk there is also a universal finite
piece in the entanglement entropy, �QCP=ln �2kr2� ln R. As
in the cases discussed above �the cylinder and the torus�,
here too �QCP has a topological origin as it is due to the

LA

LB

Γ

Dirichlet

B

A
l

Γ

FIG. 2. Torus.

L

B

l

Dirichlet

A

Γ

FIG. 3. Disk.
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winding modes of the compactified boson. However, unlike
the case of the of the cylinder and toroidal geometries, in the
case of the disk there is also a dependence on the aspect ratio
L /� �the double-logarithmic term�, as already noted in Ref.
17. �Note that we included the factor of 1 /� in the double
logarithm since it arises from the conformal mapping.�

C. Entanglement entropy of quantum dimer models
and related systems

The results on the entanglement entropy of the preceding
subsections apply to several “microscopic” systems of inter-
est. The simplest of them is the quantum dimer model on
bipartite lattices at the RK point �associated with the RK
wave function of the QDM�. As noted in Ref. 16, the RK
point of the QDM maps onto the quantum Lifshitz model for
a particular value of the radius r=1 and stiffness k=2 �in the
notation used here�. This corresponds to a 2D Euclidean bo-
son CFT at the free fermion radius. Of course, this is not an
accident, since in this case the lattice partition functions can
also be computed exactly by pfaffian methods,27,50,51 and
hence it is a free Dirac fermion system.

Generalized quantum dimer models have been discussed
recently.29,30,40 In these models the wave functions corre-
spond to dimer models with weights that depend on the num-
ber of dimer pairs on the plaquettes. For a considerable range
of values of these weights the system remains critical and
can also be mapped onto a quantum Lifshitz model, albeit
with a different stiffness connected with the presence of an
exactly marginal operator. Thus, in these models the stiffness
varies continuously as a function of the microscopic weights.
This dependence, discussed in detail in Ref. 29, is of course
nonuniversal, as it depends on the microscopic structure of
the system. Nevertheless, the critical exponents have a uni-
versal dependence on the stiffness. The same applies to the
universal piece of the entanglement entropy �QCP, which can
be read off from the results presented in this section.

Similarly, the quantum eight-vertex model wave
function16 also maps onto a free fermion problem for a spe-
cial choice of weights.42 For general values of k the fermions
are interacting �see the discussion below� but the effects only
enter through an exactly marginal operator. The mapping of
the quantum 2D eight-vertex model to the quantum Lifshitz
model was shown in detail in Ref. 16 where the relation
between the stiffness k of the compactified boson and the
Baxter weights is given explicitly. k and the weight c in the
Baxter wave function �along the six vertex line� are related
by

�

2k
= cot−1� 4

c4 − 1 �30�

for a boson with compactification radius r=1 or, equivalent,
an effective radius R=�2kr2.

The results of the preceding subsections on the entangle-
ment entropy for the quantum Lifshitz model apply to the
lattice models almost without change. Once the mapping of
the stiffness to the microscopic parameters �as in the case of
the quantum eight-vertex model� is known, the universal
piece, �QCP, can be read off immediately. The only caveat

here is that in lattice models it is impossible to have closed
simply connected regions with smooth boundaries. The re-
sulting paths of the effective coarse-grained quantum Lif-
shitz model will always have singularities, such as corners,
which contribute with a logarithmic dependence to the en-
tanglement entropy �as discussed in Ref. 17� rendering the
finite terms generally nonuniversal. The cylinder and torus
geometries are exceptional in this sense, and allow for a
direct check of these ideas in microscopic models, either
through an exact solution or by means of numerical compu-
tations.

We end this discussion by giving the results for the uni-
versal entanglement entropies �QCP for the Lifshitz univer-
sality class at the free fermion �or dimer� and Kosterlitz-
Thouless transition of the dimer and Baxter �six vertex� wave
functions for all three geometries. �See the summary of Table
I.� At the “free dimer” point �the free fermion point of the
dimer models� the stiffness k=2 �corresponding to c2=�2
in the Baxter wave function�, and the universal term of the
entanglement entropy for a disk geometry is �QCP

disk

= ln �2kr2=ln 2. For the cylinder, also at the free dimer
point, we also found �QCP

cylinder= ln 2, while for the torus we
obtained �QCP

torus=2 ln 2. �Below we will discuss the relation of
these results with the topological entanglement entropy of
the nearby Z2 topological phase.� Away from the free dimer
�or fermion� points, the stiffness k changes and so does the
entanglement entropy. Thus, at the Kosterlitz-Thouless tran-
sition point of both the dimer and six-vertex wave functions
�where the Baxter weight is c=�2�, the stiffness is k=1. �At
this point the associated c=1 CFT has an SU�2�1 Kac-
Moody current algebra, and the effective compactification
radius here is R=�2.� The �finite� entanglement entropies
now are �QCP

torus=2 ln �2, �QCP
cylinder=0, and �QCP

disk = ln �2.
The only caveat in applying the calculation of �QCP in the

QLM to microscopic models is that is impossible to have
closed simply connected regions with smooth boundaries on
a lattice. Hence the resulting paths of the effective coarse-
grained QLM will always have singularities �such as corners�
which contribute a finite logarithmic dependence to the en-
tanglement entropy.17 The cylinder and torus geometries are
exceptional in this sense, and allow for a direct check of
these ideas in microscopic models, either through an exact
solution or by means of numerical computations.

III. GENERALIZED CONFORMAL QCPS ASSOCIATED
WITH RCFT

We now generalize the application of Eq. �8� to the com-
putation of the entanglement entropy to more general case of

TABLE I. Universal entanglement entropies �QCP of the lattice
models in QLM universality class in the cylinder, torus, and disk
geometries. �QCP based on calculations from QLM is quoted at the
free fermion point �or RK point� R=2, and at the Kosterlitz-
Thouless �SU�2�1� point, R=�2.

R Cylinder Torus Disk

2 �RK point� ln 2 2 ln 2 ln 2
�2 �KT point� ln�2 0 ln�2
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conformal QCPs, specifically those associated whose wave
functions have an associated 2D Euclidean RCFT �a CFT
with a finite number of primary fields�.

A. Entanglement entropy and boundary conformal
field theory

The ground-state wave function for a conformal quantum
critical point can be expressed as Gibbs weight associated
with a 2D Euclidean CFT,

GS��� =
1
�Z

e−S���/2 �31�

as in the case of the QLM discussed in Sec. II. Hence there is
a one-to-one mapping between the norm square of the wave
function and the partition function of a local 2D Euclidean
CFT, and also between the equal-time correlators of the op-
erators of the 2D conformal QCP map onto and the correla-
tors of primary fields of the 2D Euclidean CFT. Furthermore,
we will also assume that the associated Euclidean CFT is
unitary �the S matrix to be defined below is unitary� and that
it is a RCFT. The restriction to unitary RCFT allows us to
exploit well developed technology for this large class of
CFTs,31,32 especially that of operator product expansion
�OPE� and of modular S matrix, in calculation of �QCP.

The behavior of RCFTs with specified boundary condi-
tions �especially their partition functions� is the subject of
boundary conformal field theory, and was discussed exten-
sively by Cardy.22,52 We will follow the approach and results
of Cardy in this section. We also need to specify the bound-
ary conditions at the ends of the cylinder, i.e., the boundary
states of the boundary CFT.22 Let us denote these conformal
boundary conditions by �� ,��. The associated �conformally
invariant� boundary states a� and �b� can be constructed for
each CFT. On the other hand, at the common boundary �
between the regions A and B, all n−1 fields must obey fixed
�“Dirichlet”� boundary conditions. As shown by Cardy,22 this
boundary condition is quite generally given by the boundary
state �0� in the conformal block of the identity 1.

For simplicity, we will consider here only the geometries
of a cylinder �with specific boundary conditions at each end�
and a torus. As in Eq. �8� we will need to compute the free
energies of region A, B, and A�B with fixed boundary con-
ditions.

The partition function for a RCFT on a cylinder of length
L and circumference �, with boundary conditions a and b on
the left and right ends respectively, Za/b, can be expressed in
terms of the characters �i of the RCFT,

Za/b = �
j

Nab
j � j�e−��/L� , �32�

where the integers Nab
j are the fusion constants, the coeffi-

cients in the OPE of the RCFT,

�a � �b = �
j

Nab
j � j . �33�

The Virasoro characters � j are given by the trace over the
descendants �� j� of the highest weight state, which are ob-

tained by acting on it with the Virasoro generators L̂−n�n
�0�,

� j�e−��/L� = e��c/24L tra�exp�−
��

L
L̂0	
 , �34�

where c is the central charge of the CFT and L̂0 is the n=0
Virasoro generator. Here the modular parameter is 	
� i� /2L. Under a modular transformation 	→−1 /	, which
exchanges the Euclidean “space” and “time” dimensions of
the cylinder �i.e., it flips the cylinder from the “horizontal” to
the “vertical” position�, the characters transform as

�i�e−��/L� = Si
j� j�e−4�L/�� , �35�

where Si
j is the modular S matrix of the RCFT. The modular

S matrix and the fusion coefficients are related by the Ver-
linde formula53

Nab
j = �

i

Sj
iSa

i Si
b

S0
i . �36�

The limit of interest here is, once again, L��. Under a
modular transformation, the partition function of Eq. �32�
becomes

Za/b = �
i,j

Nab
i Si

j� j�e−4�L/�� . �37�

In the limit �
L →0, Za/b is dominated by the descendants of

the identity 1 �up to exponentially small corrections�. Hence,
in this limit,

Za/b → �
i

Nab
i Si

0�0�e−4�L/�� → e�Lc/6��
i

Nab
i Si

0 �38�

and ln Za/b becomes

ln Za/b =
�Lc

6�
+ ln gab, �39�

dropping UV singular �nonuniversal� terms. The quantity
ln gab in Eq. �39� is the boundary entropy of a boundary
RCFT introduced by Affleck and Ludwig,24 where the
“ground-state degeneracy” gab is given by

gab = �
i

Nab
i Si

0. �40�

Using Eq. �8�, these standard results imply that the en-
tanglement entropy of the 2D rational conformal QCP for a
cylindrical geometry �see Fig. 1�. For boundary conditions a
and b at the two ends associated with regions A and B, the
entanglement entropy is

S = − ln�ZA
a0ZB

0b

ZA�B
ab 	 = �� − ln��� j

Na0
j Sj

0���k
N0b

k Sk
0�

�l
Nab

l Sl
0 	

= �� − ln�ga0g0b

gab
	 , �41�

where we explicitly used the fact that the state at the com-
mon boundary � should be fixed to be the fixed BC with
boundary state �0�.
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The result Eq. �41� provides an explicit way to compute
�QCP for the entire class of many-body wave functions at
QCPs associated with RCFT in terms of the data of the
RCFT,

�QCP = − ln��� j
Na0

j Sj
0���k

N0b
k Sk

0�
�l

Nab
l Sk

0 	 . �42�

This is the main result of this section. It shows that �QCP is in
general determined by the OPE coefficients Nba

c �which en-
code the boundary conditions on the partition functions� and
by the modular S matrix, Si

j, of the RCFT associated with the
norm squared of the many-body wave function at the given
QCP.

It is important to note that it is also possible to define a
unitary S matrix that governs the transformation properties of
the wave function itself under a modular transformation. This
modular S matrix plays a central role in 2D topological
phases and in topological field theories.18,21,54 However, only
for topological theories are these two S matrices the same
and in general they are different or not even defined at all.
We will come back to this issue in the discussion section.

A particularly simple result is obtained for the case of a
cylinder with fixed boundary conditions on both ends. In this
case, ZA, ZB, and ZA�B are cylinders with fixed boundary
conditions, and hence the boundary states for all three cases
are in the conformal block of the identity 1. Since in this case
the only nonvanishing OPE coefficient is N00

0 =1, the univer-
sal term of the entanglement entropy, �QCP, depends only on
the element S0

0 of the modular S matrix of the RCFT,

�QCP = − ln S0
0. �43�

For the case in which the full region A�B is a torus, we
can use an analog of Eq. �41� by writing the partition func-
tion ZA�B in the denominator of Eq. �41� as a modular in-
variant. In the limit of interest L��, the denominator gab of
Eq. �41� is replaced by a sum of terms with similar structure
corresponding to a sum over boundary conditions �and
twists� needed to represent the torus �see, for instance, Ref.
32�. Similarly, Eq. �41� can also be applied to the disk ge-
ometry upon a conformal mapping as it was done for the
case of the compactified boson in section III.

B. Applications

We will now discuss some examples of interest. In apply-
ing the results Eq. �42� to specific systems, one should keep
in mind that that choice of the inner product of the 2D quan-
tum theory can play a subtle role. As it was pointed out
recently by Fendley,35 a scale-invariant wave function does
not necessarily imply scale invariance of the correlators.
Their actual behavior depends also on the choice of inner
product. Here we have assumed that the states labeled by the
set of field configurations ��x ,y� form an orthogonal basis.
Hence, the norm of the wave function is a sum over states
with the local weights squared. However what matters is that
the matrix elements �and in particular the norm of the states�
be scale invariant. A number of interesting counterexamples
are known.55 The QLM is a special case where such a “na-

ive” inner product maintains scale invariance. This is due to
the existence of exactly marginal operators in the QLM.

Below we discuss four cases where the ground-state wave
function with the naive inner product describes QCPs: �i� a
QCP associated with the 2D Ising CFT, �ii� the QCPs asso-
ciated with compactified boson CFT, �iii� QCPs in quantum
loop models,33,34 and �iv� quantum net models.35,36,56,57 �see
footnote Ref. 58�.

1. 2D Ising wave function

As an example of a system described by an RCFT we
consider a 2D quantum spin system whose ground-state
wave function has for amplitudes the Gibbs weights of the
2D classical Ising model. This system is quantum critical if
the square of the weights �which also have the form of a
Gibbs weight for the 3D Ising model� are at the critical point
of the 2D Ising model, the Onsager value.

The critical point of the 2D Ising model is the simplest
RCFT. It has central charge c=1 /2, and three �bulk� primary
fields: �1� the identity �1, with conformal weight h=0�, �2�
the energy density ��, with conformal weight h=1 /2�, and
�3� the spin field ��, with conformal weight 1/16�, which
obey the operator algebra �OPE�

� � � = 1,

� � � = � ,

� � � = 1 + � . �44�

The critical Ising model has three possible boundary states:22

�1� the spin-up state �+ �, �2� the spin-down state �−�, and �3�
the free state �f�. �Either the up or the down state can be
regarded as the fixed boundary state.� These three boundary
states, �+ �, �−�, and �f� are in the conformal blocks of the

identity 1 �denoted by �0̃��, the energy density � �denoted by

� 1̃
2 �, and the spin field � �denoted by � 1̃

16��, respectively. The
boundary states are given by22

� + � � �0̃� =
1
�2

�0� +
1
�2

��� +
1
�4 2

��� ,

�− � � � 1̃

2
� =

1
�2

�0� +
1
�2

��� −
1
�4 2

��� ,

�f� � � 1̃

16
� = �0� − ��� . �46�

The modular S matrix is
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S =�
1

2

1

2

1
�2

1

2

1

2
−

1
�2

1
�2

−
1
�2

0
� , �46�

where the columns are labeled by the highest weights 0, 1/2,
and 1/16, in that order.

The entanglement entropy for this wave function can now
be computed, using the result of Eq. �41�. We will take re-
gion A�B to be a long cylinder of length L and circumfer-
ence �, and regions A and B to be two cylinders of lengths LA
and LB, respectively, with the same circumference � and with
L=LA+LB.

Let us take the boundary conditions at both ends of A�B
to be free. By a conformal mapping, this maps onto the disk.
Back on the cylinder, the free boundary condition is de-
scribed by the boundary state �f�, which is in the conformal
block of the primary field �. On the other hand, at the bound-
ary � between regions A and B, we have the fixed boundary
condition, the up state �+ �. We readily find

g�,0 = N�,0
� S�

0 =
1
�2

,

g0,� = N0,�
� S�

0 =
1
�2

,

g�,� = N�,�
0 S0

0 + N�,�
� S�

0 = 1. �47�

The universal term of the entanglement entropy, �QCP now is

�QCP = − ln
ga0g0b

gab
= − ln

�S�
0�2

S0
0 + S�

0 = ln 2. �48�

On the other hand, we could consider instead the case of
fixed boundary conditions at both ends of the cylinder A�B.

This corresponds to the boundary state �0̃�. Since the bound-
ary condition on � is always fixed, �QCP is now

�QCP = − ln S0
0 = ln 2. �49�

In the case where A�B is torus of large circumference L and
small circumference � �hence with modular parameter 	
= i� /L�, the regions A and B are cylinders each of length LA
and LB and circumference �, with fixed boundary conditions
at both ends. The partition function for the torus, ZA�B

torus, is31,32

ZA�B
torus =

1

2
���2�	�

��	�
� + ��3�	�

��	�
� + ��4�	�

��	�
�	 . �50�

Using the modular invariance of Z on the torus �	→−1 /	�,
one finds that in the limit L��, ZA�B

torus → 3
2 . Hence, in the case

of the torus, �QCP is

�QCP
torus = − ln

�S0
0�2

3

2

= ln 6. �51�

2. Compactified boson wave function

We can also use this approach to compute the entangle-
ment entropy for the compactified boson wave function �the
quantum Lifshitz state� discussed in Sec. II. However, unlike
the explicit computation of the boson determinant presented
in the previous section, a computation that can be done for
any compactification radius R, the boundary CFT approach
we are using in this section only applies for a rational CFT.
This restricts the compactification radius to be such that R2 is
a rational number. �The general case can be regarded as a
limit.�

It is now straightforward to compute the entanglement
entropy using Eq. �41�. For this case we find �QCP=−ln S0

0

=ln R, consistent with the results of the preceding section.

3. Quantum loop models

Quantum loop models are two-dimensional quantum sys-
tems whose Hilbert space is spanned by states labeled by
loop configurations �or coverings� of a two-dimensional lat-
tice. We will denote by �L� the set of these configurations.
Conventionally, this set of states are taken to be a basis of the
loop Hilbert space, and hence they are assumed to be linearly
independent, complete, and orthonormal, �with respect to the
naively defined inner product.�

Quantum loop models were originally proposed as candi-
dates for time-reversal invariant topological phases.33,59,60

Wave functions in the Hilbert space of �multi� loop configu-
rations have the form

��x,d�� = �
L

xL�L�dN�L��L� . �52�

Here N�L� is the number of loops in state �configuration� L,
L�L� is the length of loop in the configuration, d is the “loop
fugacity,” and x is the weight �fugacity� of a unit length of
loop.

The candidate wave functions of a quantum loop model in
a putative topological phase depends on the loop configura-
tion but not on the length of the loops. The simplest such
state is the “d-isotopy” �multi� loop wave function”59,60

�d� = �
L

dN�L��L� �53�

obtained from ��x,d�� by setting the fugacity of the unit
length of loop x=1. This is a generalization of Kitaev’s
“Toric Code” wave function61 �d=1�, i.e., a Z2 gauge theory
deep in its deconfined phase in 2+1 dimensions. Another
limit of interest is the “fully packed” state

���,d�� = lim
x→�

�
L

xL�L�dN�L��L� �54�

obtained by setting x→�, which forces the constraint that
the loops cover the maximal allowable set of links on the
lattice.

With the naively defined inner product, the norm squared
of the d-isotopy state �d�, Eq. �53�, is
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Z�d2� � �d�2 = �
L

d2N�L�, �55�

which is the same as the partition function of a 2D classical
loop model on the same lattice, with a weight d2 per loop.
Likewise, the norm squared of the fully packed loop state
���,d�� is the partition function Z�� ,d2� of the classical fully
packed loop model, with fugacity d2, on the same lattice.

The partition functions of classical loop models on a 2D
lattice have been studied extensively, particularly on the hon-
eycomb lattice �for a detailed review see Refs. 37, 62, and
63.� In the fully packed limit, the partition function Z�� ,d2�
is critical for d��2. The universality classes of the fully
packed loop models �on the honeycomb lattice� are rational
unitary CFTs only for d=1 �the SU�2�1 RCFT and d=�2 �the
SU�3�1 RCFT�. For finite x, the partition function for the
dense loop gas Z�x ,d2� is also critical for d��2. The uni-
versality classes are again rational unitary CFTs only for d
=1 and d=�2. The fixed point for the case d=1 is equivalent
to the statistics of the proliferated domain walls of the clas-
sical 2D Ising model at infinite temperature.37 For d=�2 the
dense and dilute loop gases have the same critical theory, the
Kosterlitz-Thouless critical point, and hence also the SU�2�1
RCFT.

We can now use the result in Eqs. �42� and �43� to com-
pute the universal term of the entanglement entropy for the
loop wave functions with d=1,�2, on a cylinder with fixed
boundary conditions �for the loops�. The modular S matrices
are known,20,31,32 and the needed S0

0 matrix elements are S0
0

= 1
�2

, 1
�3

, for SU�2�1 and SU�3�1, respectively. The universal
term �QCP of the entanglement entropy for each case is
�QCP=ln �2, ln �3,−ln 2 for the fully packed state at d=1
�and also for the loop gas at d=�2�, the fully packed loop
state at d=�2, and the dense loop gas at d=1 �corresponding
to the Kitaev state�, respectively. Here we have used a recent
result on the behavior of the dense loop model by Cardy64

who showed �among many other things� that for d=1 the
partition function of the dense loop model on the cylinder
Z=2. We will see in the discussion section that this negative
value, �=−ln 2, coincides with the direct computation of the
topological entanglement entropy in the Kitaev wave
function.18,19,65

4. Quantum net models

Finally, we will briefly discuss the more interesting, but
less understood problem of the wave functions for quantum
net models.35,36,56,57 These states were proposed as candi-
dates for a time-reversal invariant non-Abelian topological
phase. The Hilbert space of quantum net models is spanned
by the coverings of a lattice by configurations of nets, i.e.,
branching loops �with trivalent vertices�. An interesting ex-
ample is the chromatic polynomial state.56 In this state, the
nets are regarded as a configuration of domain walls of a
Q-state Potts model. The weight of a given state �L� is the
chromatic polynomial �Q�L� of the configuration. The chro-
matic polynomial counts the number of ways of coloring
regions of the lattice separated by domain walls of a Q-state
2D Potts model. They were first introduced in the computa-
tion of the low-temperature expansion for the 2D Potts mod-

els �see, for instance, Ref. 42.� For noninteger Q, the chro-
matic polynomial can be computed by an iterative
procedure.56 The 2D Potts model is known to have a critical
point for Q�4.

Following Ref. 56, we consider the norm of the chromatic
polynomial state with Q�4. In order to compute the norm,
we have to square the weight, resulting in a partition function
involving the sum of the square of the chromatic polynomial.
It is then natural to ask for a value of Q such that �Q

2 �L�
��Qeff

�L�, for some Qeff. Then the nets will be critical pro-
vided Qeff�4. It turns out56 that up to a suitably chosen
fugacity for trivalent vertices,57 this property holds only for
�Q= 1+�5

2 , the Golden Ratio, with Qeff=2+ 1+�5
2 �4. Thus, for

this state the nets are critical.
This case is interesting for several reasons. One is that

strong arguments56 suggest that it is possible to define for
this wave function an excitation �a defect� which is denoted
by 	, a Fibonacci anyon �not to be confused with the modular
parameter� with the fusion rule, 	�	=1+	. Fibonacci
anyons are of prime interest in the topological approach to
quantum computation.66 However, for this approach to work
it is necessary that this state should describe a topological
state, which requires that its local excitations �not the nets�
be gapped. Fendley35 recently gave strong arguments that
imply that this state, with the naive inner product we use
here, is not topological but a quantum critical state.

Another feature that makes this state interesting is that
the correlations encoded in the norm of the state for �Q
= 1+�5

2 are described by a RCFT, the minimal model of the
Friedan-Qiu-Shenker67 series of unitary RCFTs at level m
=9, with central charge c= 14

15. This minimal model has a
large number of primaries �36� and has not been studied in
detail. Nevertheless, its modular S matrix is known �as it is
for the entire series31�. Although to the best of our knowl-
edge the boundary CFT of this minimal model has not been
investigated, we conjecture that the boundary state corre-
sponding to the fixed boundary condition is the analog of the

state �0̃� in the 2D critical Ising model �the m=3 member of
the same series�, i.e., the state in the conformal block of the
identity.52 Thus, if we consider this state on a cylinder with
fixed boundary conditions, the entanglement entropy for ob-
serving only half of the system has a universal term �QCP of
the form given in Eq. �43�, and hence is given in terms of the
S0

0 element of the modular S matrix of this RCFT31

�QCP = − ln S0
0 = − ln� sin��

9
	

15 + 3�5
� . �56�

IV. CONCLUSIONS AND DISCUSSION

We have shown that at 2D conformal QCPs �with dynami-
cal exponent z=2�, the entanglement entropy for a region
with a smooth boundary quite generally has universal finite
contributions which we denoted by �QCP
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SQCP = �� + �QCP. �57�

We studied the universal nature of �QCP with two comple-
mentary approaches for large classes of 2D conformal QCPs:
First for the QLM universality class, we calculated �QCP ex-
plicitly in terms of the partition functions �that of compacti-
fied boson� associated with the norm squared of the wave
function. Later we used known results from boundary CFT to
show that �QCP is determined by the detailed structure of the
associated RCFT encoded in the modular S matrix and the
OPE fusion coefficients for the primary fields. We also ap-
plied this general results to compute �QCP in several systems
of interest: the quantum Lifshitz model, the generalized
quantum dimer and quantum eight-vertex models, and quan-
tum loop and net models.

However, we showed �c.f. Eq. �43�� that for a general
conformal quantum critical point, whose ground-state wave
function is given by the Gibbs weights of a Euclidean ratio-
nal unitary CFT, the universal term �QCP is determined by
the modular S matrix associated with the norm squared of the
wave function. Thus, the modular S matrix of the topological
phase and that of the wave functions of 2D conformal quan-
tum critical points have a conceptually different origin.

We note that while our result for the entanglement entropy
has the same form as the entanglement entropy for a topo-
logical phase,18,19 the finite universal terms �QCP and �topo
have a different origin and structure. In the case of a topo-
logical phase, �topo is in general determined by the modular S
matrix of the topological field theory of the topological
phase, and it is given in terms of topological invariants of
the effective topological field theory that describes this
phase.18–20 This modular S matrix governs the transformation
properties of the ground state within the degenerate ground-
state Hilbert space of the topological phase under modular
transformations on a torus: 	→−1 /	, where 	 is the modular
parameter of the torus.21 On the other hand, for 2D confor-
mal QCPs whose ground-state wave function is given by the
Gibbs weights of a Euclidean rational unitary CFT, the uni-
versal term �QCP is determined by the modular S matrix as-
sociated with the norm squared of the wave function and the
S matrix connects between different boundary conditions.
Hence the roles of the modular S matrix in the computation
of the universal O�1� terms to the entanglement entropy have
conceptually different origin. Moreover, �QCP and �topo enter
with opposite signs in their contributions to their respective
entanglement entropies. In fact, in all the cases we looked at
we found that �QCP�0, except for the Kitaev state which is
topological, and we recovered the known result. �It is unclear
to us how general this difference actually is and, more im-
portantly, if it has a deeper meaning.� In any case, the fact

that the entanglement entropy has the universal form of Eq.
�2� has led to the widespread assumption that this scaling is
a signature of a topological phase. However we have shown
here that this is not necessarily the case as this scaling is also
obeyed at conformal quantum critical points in 2D.

It is also interesting to note the striking similarity of the
structure of Eq. �42� �with its dependence on the S matrix
and the fusion rules� with the results of Fendley et al.68 for
the change in the entanglement entropy of a 2D topological
fluid, a fractional quantum Hall state, by the action of a point
contact. Recently, Refs. 69 and 70 found finite universal
terms in the entanglement entropy for 1+1 dimensional
CFTs with a similar structure to what we found here in 2D
conformal QCPs. Calculations of quantum fidelity in 1D also
find a similar structure.71,72 Recent work by Li and Haldane73

also raises the interesting possibility of computing the en-
tanglement spectrum for a theory with a wave function de-
scribed by a known CFT, but this is beyond the scope of this
paper.

Finally, given the close connection between the universal
piece of the entanglement entropy �QCP and the Affleck-
Ludwig entropy of the associated 2D classical partition func-
tions it is interesting to inquire if �QCP may flow under some
perturbation. Clearly this cannot happen under the action of a
boundary perturbation �as in the Affleck-Ludwig case� as
that would require one to make a physical change in the
wave function on the boundary �, rather than a measure-
ment. However, it is interesting to consider instead how the
entanglement entropy �and in particular the finite term �QCP�
would evolve as one perturbed the �bulk� system either by a
finite nonzero temperature into the quantum critical regime,
or by a relevant operator that drives the system into a nearby
topologically ordered phase that can be accessed by local
perturbations16,26,27,35,56 and to investigate possible connec-
tions with RCFT.74–76
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