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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

One-component order parameter in URu2Si2 uncovered by 
resonant ultrasound spectroscopy and machine learning
Sayak Ghosh1*, Michael Matty1*, Ryan Baumbach2, Eric D. Bauer3, K. A. Modic4, 
Arkady Shekhter2, J. A. Mydosh5, Eun-Ah Kim1, B. J. Ramshaw1†

The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even 
basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are 
“hidden.” We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across 
THO. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one- 
component order parameter. We develop a machine learning framework that reaches this conclusion directly from 
the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad 
class of theories of hidden order based on two-component order parameters, and constrains the nature of the 
fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning 
framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems. 

INTRODUCTION
Phase transitions mark the boundary between different states of 
matter, such as liquid to solid, or paramagnet to ferromagnet. At the 
phase transition, the system lowers its symmetry: Translationally 
invariant liquids become crystalline solids; paramagnetic spins align 
to break time reversal and rotation symmetry in a magnet. The con-
ventional description of a second-order phase transition—Landau 
theory—requires knowledge of which symmetries are broken in the 
low-temperature phase to construct an order parameter (OP). Several 
possibilities have been put forth for the symmetry of the OP in the 
hidden order (HO) state of URu2Si2 (Table 1), but most of these rely 
on specific microscopic mechanisms that are difficult to verify 
experimentally (1, 2).

 The purpose of this paper was to use resonant ultrasound spectros-
copy (RUS) to place strict thermodynamic constraints—independent 
of microscopic mechanism—on the OP symmetry in URu2Si2. While 
RUS is a powerful technique—capable of constraining or identifying 
the symmetries broken at a phase transition (3)—it has one substantial 
drawback: A single missing resonance renders an entire spectrum 
unusable. This is because traditional RUS data analysis relies on solving 
the elastic wave equation and mapping the computed resonances 
one to one with measured resonances—a single missing resonance 
invalidates this mapping. Here, we develop a new machine learning– 
based approach. We take advantage of the fact that neural networks 
can be trained to recognize features in complex datasets and classify 
the state of matter that produces such data (4–9). We validate this 
approach by analyzing an RUS dataset that we are confident can also be 
analyzed using traditional methods (data from a large single- crystal 
URu2Si2 with a well-defined geometry). We then analyze data from a 
higher-quality URu2Si2 sample that has an ill-defined geometry—a 
task that is impossible for the traditional analysis method but which 
is easily performed by our neural network.

While the broken symmetries of HO are unknown, most theories 
assume some form of “multipolar order,” whereby localized 5f electrons 
on the uranium site occupy orbitals that order below THO = 17.5 K. 
However, direct experimental evidence for localized 5f electrons—
such as crystalline electric field level splitting—does not exist (1), 
leaving room for theories of HO based on itinerant 5f electrons. Many 
possible OPs remain in contention, but, whether itinerant or localized, 
all theories of HO can be classified on the basis of the dimensionality 
of their point group representation: one component (10–19) or two 
component (20–26) [see Table 1 and (27)]. Theories of two-component 
OPs are motivated largely by the experiments of Okazaki et al. (28) 
and Tonegawa et al. (29), which detect a small C4 symmetry breaking 
at THO. More recent x-ray experiments have cast doubt on these 
results (30), leaving even the dimensionality of the OP in URu2Si2 
an open question.

Determining OP dimensionality is more than an exercise in 
accounting: The two-component nature of loop currents allows for 
dynamics that have been suggested to explain the pseudogap in 
high-Tc cuprates (31), and the proposed two-component px + ipy 
superconducting state of Sr2RuO4 has a unique topological structure 
that can support Majorana fermions (32, 33). Establishing the dimen-
sionality of the HO state not only allows us to rigorously exclude a 
large number of possible OPs but also provides a starting point for 
understanding the unusual superconductivity that emerges at lower 
temperature in URu2Si2.

RESULTS
RUS of URu2Si2
RUS measures the mechanical resonance frequencies of a single- 
crystal specimen—analogous to the harmonics of a guitar string but 
in three dimensions (see Fig. 1A). A subset of this spectrum for a 
3 mm by 2.8 mm by 2.6 mm crystal of URu2Si2 (sample S1) is shown 
in Fig. 1B, with each peak occurring at a unique eigenfrequency of 
the elastic wave equation (see the Supplementary Materials). Encoded 
within these resonances is information about the sample’s dimen-
sions and density, which are known, and the six elastic moduli, which 
are unknown. As electrons and phonons are coupled strongly in 
metals, the temperature dependence of the elastic moduli reveals 
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fluctuations and instabilities in the electronic subsystem. In particular, 
elastic moduli are sensitive to symmetry breaking at electronic phase 
transitions (3, 34). The difficulty lies in converting the temperature 
dependence of the resonance spectrum into the temperature depen-
dence of the elastic moduli. The traditional analysis involves solving 
the three-dimensional (3D) elastic wave equation and adjusting 
the elastic moduli to match the experimental resonance spectrum. 
However, if even a single resonance is missing from the spectrum 
(e.g., due to weak coupling of a particular mode to the transducers), 
then this analysis scheme breaks down [see Ramshaw et al. (3) for 
further discussion of this problem].

Figure 1C shows the temperature dependence of seven repre-
sentative elastic resonances through THO (29 resonances were mea-
sured in total). Note that while some resonances show a step-like 
discontinuity or “jump” at THO, others do not. This jump is present 
in the elastic moduli for all second-order phase transitions (3, 34, 35) 
but has never before been observed in URu2Si2 due to insufficient 
experimental resolution (36–40). Traditional RUS produces spectra 
at each temperature, such as the one shown in Fig. 1B, by sweep-
ing the entire frequency range using a lock-in amplifier. The 
resonance frequencies are then extracted by fitting Lorentzians 
to each peak (34). We have developed a new approach whereby the 
entire spectrum is swept only once—to identify the resonances—
and then, each resonance is tracked as a function of temperature 
with high precision using a phase-locked loop. This increases 

the density of data points per unit temperature by roughly a factor 
of 1000 and increases the signal-to-noise by a factor of 30 (see 
Materials and Methods).

The complex strain fields produced at each resonance frequency 
(Fig. 1A) can be broken down locally into irreducible representations 
of strain (ϵk). Each irreducible strain then couples to an OP  of a 
particular symmetry in a straightforward manner (35). In this way, 
analysis of the temperature dependence of the resonance frequencies 
can identify or constrain the OP symmetry. In a tetragonal crystal, 
such as URu2Si2, elastic strain breaks into five irreducible represen-
tations (Fig. 2): two compressive strains transforming as the identity 
A1g representation, and three shear strains transforming as the B1g, 
B2g, and Eg representations. Allowed terms in the free energy ℱ are 
products of strains and OPs that transform as the A1g representation. 
As HO is thought to break at least translational symmetry, the lowest- 
order terms allowed by both one-component and two-component 
OPs are linear in the A1g strains and quadratic in OP: ℱ = ϵA1g ⋅ 

2 
[see (41)]. Quadratic-in-order-parameter, linear-in-strain coupling 
produces a discontinuity in the associated elastic modulus at the phase 
transition: This jump is related to discontinuities in the specific heat 
and other thermodynamic quantities through Ehrenfest relations 
(34, 42). For OPs with one-component representations (any of the 
Ai or Bi representations of D4h), only the elastic moduli correspond-
ing to A1g compressional strains couple in this manner. In contrast, 
shear strains couple as  ℱ =  ϵ k  

2 ·     2   and show at most a change in 
slope at THO (3). Thus c33, c23, and (c11 + c12)/2 may exhibit jumps 
at phase transitions corresponding to one-component OPs, while 
(c11 − c12)/2, c66, and c44 cannot.

Two-component OPs (of the Ei representations), on the other hand, 
have bilinear forms that can couple with two of the shear strains 
to first order. A two-component OP,    →   = {   x  ,    y  } , has the bilinears 
   x  

2  +   y  2 ,   x  
2  −   y  2  , and xy of the A1g, B1g, and B2g representations, 

respectively. In addition to the standard ​​ϵ   A  1g     ⋅   x  
2  +   y  2   terms, the free 

energy now contains the terms   ϵ   B  1g     ⋅ (  x  
2  −   y  2 )  and ϵB2g ⋅ xy. A second- 

order phase transition characterized by a two-component OP there-
fore exhibits discontinuities in the B1g and B2g shear elastic moduli 
[(c11 − c12)/2 and c66, respectively], in addition to jumps in the compres-
sional A1g moduli (see the Supplementary Materials for a discussion 
of the E3/2,g representation, pertaining to “hastatic” order).

We first perform a traditional RUS analysis, extracting the 
temperature dependence of the six elastic moduli (Fig. 2, B and C) 
from 29 measured resonances by solving the elastic wave equation 
and fitting the spectrum using a genetic algorithm [see the Supple-
mentary Materials of Ramshaw et al. (3) for details]. The evolution 
of the elastic moduli across THO shows jumps in two of the A1g 
elastic moduli, whereas the B1g and B2g shear moduli show only a 
break in slope at THO to within our experimental uncertainty 
(Fig. 2D). Jumps in the shear moduli would be expected for any 
OP of the two-component Ei representations (20–26)—the fact that 
we do not resolve any shear jumps constrains the OP of the HO 
phase to belong to a one-component representation of D4h. The fact 
that we do not resolve a jump in c33 is consistent with the magni-
tudes of the jumps in (c11 + c12)/2 and c23 (see the Supplementary 
Materials for details).

In principle, this traditional analysis is sufficient to determine the 
order-parameter dimensionality in URu2Si2. The process of solving 
for the elastic moduli, however, incorporates systematic errors arising 
from sample alignment, parallelism, dimensional uncertainty, and 
thermal contraction. Even more detrimental is the possibility that 

Table 1. Proposed OPs of the HO state in URu2Si2, classified by their 
dimensionality and their point group representation. Note that 
designations such as “hexadecapole” order are only applicable in free 
space—crystalline electric fields break these large multipoles into the 
representations listed in this table. 

Dimensionality Symmetry Reference

One-component

A1g Harrison and Jaime (53)

A1u Kambe et al. (19)

A2g Haule and Kotliar (14), 
Kusunose and Harima 
(15), and Kung et al. (17)

A2u Cricchio et al. (16)

B1g Ohkawa and Shimizu 
(11) and Santini and 

Amoretti (12)

B1u Kiss and Fazekas (13)

B2g Ohkawa and Shimizu 
(11), Santini and 

Amoretti (12), and 
Harima et al. (10)

B2u Kiss and Fazekas (13)

Two-component

Eg Thalmeier and 
Takimoto (20), 

Tonegawa et al. (23), 
Rau and Kee (22), and 

Riggs et al. (26)

Eu Hoshino et al. (21), 
Ikeda et al. (25), and 

Riggs et al. (26)

E3/2,g Chandra et al. (54)
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the measured spectrum is missing a resonance, rendering the entire 
analysis incorrect. While we are confident in our analysis for the 
particularly large and well-oriented sample S1, large samples of 
URu2Si2 are known to be of slightly lower quality (43). Smaller, 
higher-quality crystals of URu2Si2 do not lend themselves well to 
RUS studies, being hard to align and polish to high precision. Smaller 
samples also produce weaker RUS signals, making it easier to miss a 
resonance. We have therefore developed a new method for extract-
ing symmetry information directly from the resonance spectrum, 
without needing to first extract the elastic moduli themselves, even 
if the spectrum is incomplete. This method takes advantage of 
the power of machine learning algorithms to recognize patterns in 
complex datasets.

Machine learning for RUS
Artificial neural networks (ANNs) are popular machine learning 
tools due to their ability to classify objects in highly nonlinear ways. 
In particular, ANNs can approximate smooth functions arbitrarily 
well (44). Here, we train an ANN to learn a function that maps the 
jumps in ultrasonic resonances at a phase transition to one of two 
classes, corresponding to either a one-component or two-component 
OP. One-component OPs induce jumps only in compressional elastic 
moduli, whereas two-component OPs also induce jumps in two of 
the shear moduli. Phase transitions with two-component OPs should 
therefore show jumps in more ultrasonic resonances at a phase 
transition than phase transitions with one-component OPs. Our 
intent is that this difference in the distribution of jumps can be 
learned by an ANN to discriminate between one-component and 
two-component OPs.

An ANN must be trained with simulated data that encompass a 
broad range of possible experimental scenarios. In our case, we simulate 
RUS spectra given assumptions about the sample and the OP dimen-
sionality. Starting with a set of parameters randomly generated within 
bounds that we specify—these include the sample geometry, density, 
and the six elastic moduli—we solve the elastic wave equation to pro-
duce the first N resonance frequencies that would be measured in an 
RUS experiment. Then, using a second set of assumptions—whether 
the OP has one component or two, whether our simulated experiment 
has k missing resonances, and the relative sizes of the elastic constant 
jumps produced at THO—we calculate the jumps at THO for the first 
n resonances (see Fig. 3). By varying the input assumptions, we produce 
a large number of training datasets that are intended to encompass the 
(unknown) experimental parameters.

While the sample geometry, density, and moduli are well deter-
mined for sample S1 and only varied by a few tens of percent, the 
dimensionality of the OP, the number of missing resonances, and 
the sizes of the jumps in each symmetry channel are taken to be 
completely unknown. We vary these latter parameters across a broad 
range of physically possible values (see Fig. 3 and the Supplementary 
Materials for further details). To prepare the simulated data for 
interpretation by our ANN, we take the first n jumps, sort the jumps 
by size, normalize the jumps to lie between zero and one, and label 
the datasets by the dimensionality of the OP that was used to create 
them—either one component or two.

This normalized and sorted list of numbers {fi/fi} is used as input to 
an ANN. Our ANN architecture is a fully connected, feedforward neural 
network with a single hidden layer containing 20 neurons (see Fig. 3). 
Each neuron j processes the inputs {fi/fi} according to the weight matrix 

Fig. 1. RUS across THO in URu2Si2. (A) Schematic resonance eigenmodes obtained as a solution to the 3D elastic wave equation. Each mode contains a unique proportion 
of the five irreducible strains (see Fig. 2A). (B) Room temperature ultrasonic spectrum of sample S1, shown between 500 kHz and 1 MHz. (C) Temperature evolution of 
seven characteristic resonances, out of 29 total measured resonances, near the HO transition—plots are shifted vertically for clarity. Three resonances (672, 713, and 1564 kHz) 
show jumps at THO (inset illustrates what is meant by the jump), while the others do not, signifying contributions from different symmetry channels. D
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wji and the bias vector bj specific to that neuron as (wjixi + bj), where 
the rectified linear activation function is given by (y) ≡ max (y,0). 
The sum of the neural outputs is normalized via a softmax layer.

We train the ANN using 10,000 sets of simulated RUS data for 
the case of a one-component OP, with varied elastic constants, sample 
geometries, jump magnitudes, and missing resonances, and another 
10,000 sets for the case of a two-component OP. We use cross- 
entropy as the cost function for stochastic gradient descent. We 
train 10 different neural networks in this way to an accuracy of 
∼90% and then fix each individual network’s weights and biases. 
Once the networks are trained, we ask each ANN for its judgment 
on the OP dimensionality associated with an experimentally deter-
mined set of 29 jumps and average the responses from each neural 
network. The sizes of the jumps depend on how THO is assigned—
assigning THO artificially far from the actual phase transition will 
produce large jumps in all resonances. We therefore repeat our 
ANN determination using a range of THO around the phase transi-
tion and plot the outcome as a function of THO.

Figure 4A shows the results of our ANN analysis for sample S1—
the same sample discussed above using the traditional analysis. To 
visually compare the training and experimental data in a transpar-
ent fashion, we plot the list of sorted and normalized jumps against 
their indices in the list. The average of the one-component training 
data is shown in red; the average of the two-component training 
data is shown in blue; the experimental jumps are shown in gray. 

It is clear that the experimental data resemble the one-component 
training data much more closely. This resemblance is quantified in the 
inset, showing the ANN confidence that the experimental data belong 
to the one-component class for varying assignments of THO. We find 
that the confidence of a one-component OP is maximized in the region 
of assigned THO that corresponds to the experimental value of THO.

Thus far, we have shown that both methods—the traditional 
method of extracting the elastic moduli using the elastic wave equation 
and our new method of examining the resonance spectrum directly 
using a trained ANN—agree that the HO parameter of URu2Si2 is one 
component. We can now use the neural network to analyze a smaller, 
irregular-shaped but higher-quality [higher THO (43)] sample that 
cannot be analyzed using the traditional method due to its complicated 
geometry. Figure 4B shows the result of the ANN analysis performed 
on a resonance spectrum of sample S2. The sorted and normalized 
spectrum looks very similar to that of sample S1, and the averaged ANN 
outcome gives 90% confidence that the OP is one component. Despite 
the fact that sample S2 has a geometry such that the elastic moduli 
cannot be extracted, its resonance spectrum still contains information 
about the OP dimensionality, and our ANN identifies this successfully.

DISCUSSION
Our two analyses of ultrasonic resonances across THO in URu2Si2 
strongly support one-component OPs, such as electric-hexadecapolar 

Fig. 2. Traditional extraction of symmetry information from elastic moduli. (A) The tetragonal crystal structure of URu2Si2 and its five irreducible representations of 
strain, along with the associated moduli. Each resonance shown in Fig. 1A can be decomposed into this basis set of strains, modulated in phase at long wavelengths 
throughout the crystal. c23 characterizes the direct coupling between the two A1g strains. (B) Compressional (A1g shown in orange) and (C) shear (B1g, B2g, and Eg shown in 
blue) elastic moduli, with dashed guides to the eye showing the temperature dependence extrapolated from below and above THO. The absolute values (in gigapascals) 
of the moduli at ∼20 K were determined to be (c11 + c12)/2 = 218.0, c33 = 307.4, c23 = 112.8, (c11 − c12)/2 = 65.2, c66 = 140.6, and c44 = 101.8. (D) The magnitude of the jumps 
at THO with their experimental uncertainties. A large jump occurs in (c11 + c12)/2 at THO, along with a small jump in c23. The shear moduli, on the other hand, show only a 
change in slope at THO—this constrains the OP of the HO state to transform as a one-component representation.
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Fig. 3. Schematic of the algorithm used to generate the training data. Values for elastic moduli and dimensions are chosen randomly from a range that bounds 
our experimental uncertainties. One-component OPs give jumps only in A1g moduli, whereas two-component OPs also give jumps in B1g and B2g moduli. Separate 
output files are generated corresponding to one-component and two-component OPs, each containing n jumps, where n is the number of frequencies whose 
temperature evolution could be experimentally measured. We use scaled RUS frequency shifts fj/fj as input to the ANN. The neurons in the hidden layer have 
weights wij and biases bi. Each output neuron corresponds to one of the two OP dimensionalities under consideration, i.e., one-component and two-component. 
The output value of each neuron is the network’s judgment on the likelihood of that OP dimensionality.

A B

Fig. 4. Results of the ANN analysis for two samples of URu2Si2. Upper blue curves show the averaged, sorted, simulated frequency shift (jump) data plotted 
against its index in the sorted list for a two-component OP for (A) sample S1 and (B) sample S2. The data are normalized to range from 0 to 1. Lower, red curves 
shows the same for a one-component OP. Gray dots show experimental data for critical temperature assignment (A) THO = 17.26 K and (B) THO = 17.505 K, which 
visually aligns more closely with the average one-component simulated data than the two-component simulations. Insets: Percentage confidence of the 
one-component output neuron for various assignments of THO averaged over 10 trained networks. A maximum confidence of (A) 83.2% occurs for THO = 17.26 K, 
and (B) 89.7% for THO = 17.505 K. Sample S2 has a higher value of THO due to its lower impurity concentration, as verified independently by the resistivity. Photo 
credit: Sayak Ghosh, Cornell University.
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order (14), the chiral density wave observed by Raman spectroscopy 
(17, 18, 45), and are consistent with the lack of C4 symmetry breaking 
observed in recent x-ray scattering experiments (30). Our analysis 
rules against two-component OPs, such as rank-5 superspin (19, 22) 
and spin nematic order (24). The power of our result lies in its inde-
pendence from the microscopic origin of the OP: Group theoretical 
arguments alone are sufficient to rule out large numbers of possible 
OPs. It could be argued that the coupling constants governing the 
jumps in the shear moduli are sufficiently small such that the jumps 
are below our experimental resolution. Previous experiments, however, 
have shown these coupling constants to be of the same order of 
magnitude in other materials with multicomponent OPs (35, 46, 47). 
It has also been demonstrated that the size of the jump in heat 
capacity at THO is largely insensitive to residual resistivity ratio (RRR) 
(43, 48, 49). It is therefore hard to imagine that higher RRR samples 
would yield jumps in the shear moduli.

The use of ANNs to analyze RUS data represents an exciting op-
portunity to reexamine ultrasound experiments that were previously 
unable to identify OP symmetry. For example, irregular sample geom-
etry prevented identification of the OP symmetry in the high-Tc 
superconductor YBa2Cu3O6.98 (34). Reanalysis of this spectrum using 
our ANN could reveal whether the OP of the pseudogap is associated 
with Eu-symmetry orbital loop currents. The proposed two-component 
px + ipy superconducting state of Sr2RuO4 and other potential spin- 
triplet superconductors could also be identified in this fashion, where 
traditional pulse-echo ultrasound measurements have been con-
founded by systematic uncertainty (50).

Beyond RUS, there are many other data analysis problems in 
experimental physics that stand to be improved using an approach 
similar to the one presented here (51). In particular, any technique 
where simulation of a dataset is straightforward but where fitting is 
difficult should be amenable to a framework of the type used here. 
The most immediately obvious technique where our algorithm could 
be applied is nuclear magnetic resonance (NMR) spectroscopy. NMR 
produces spectra in a similar frequency range to RUS but which 
originate in the spin-resonances of nuclear magnetic moments. Modern 
broadband NMR can produce complex temperature-dependent spectra, 
containing resonances from multiple elements situated at different 
sites within the unit cell. Given a particular magnetic order, it is 
relatively straightforward to calculate the NMR spectrum—i.e., to 
produce training data. The inverse problem, however, is more challeng-
ing: recovering a temperature-dependent magnetic structure from an 
NMR dataset. In a way similar to RUS, missing resonances and resonances 
mistakenly attributed to different elements can render an analysis entirely 
invalid. It should be relatively straightforward to adapt our framework 
for generating training data and our ANN to extract temperature (or 
magnetic field)–dependent magnetic structures from NMR spectra.

MATERIALS AND METHODS
Sample S1 was grown by the Czochralski method. A single crystal 
oriented along the crystallographic axes was polished to dimensions 
3.0 mm by 2.8 mm by 2.6 mm, with 2.6 mm along the tetragonal 
long axis. Sample S2 was grown was grown by the Czochralski method 
and then processed by solid-state electrorefinement. Typical RRR 
values for ab-plane flakes of URu2Si2 taken from the larger piece 
range from 100 to 500. The RRR values measured on larger pieces 
(Fig. 4) are between 10 and 20. For a comparison of different growth 
methods for URu2Si2 see Gallagher et al. (49).

Resonant ultrasound experiments were performed in a custom- 
built setup consisting of two compressional-mode lithium niobate 
transducers, which were vibrationally isolated from the rest of the 
apparatus. The top transducer was mounted on a freely pivoting arm, 
ensuring weak coupling and linear response. The response voltage 
generated on the pickup transducer—maximum whenever the drive 
frequency coincides with a sample resonance—was measured with 
lock-in technique. The response signal was preamplified using a 
custom-made charge amplifier to compensate for signal degradation 
in coaxial cables (52). Oxford Instruments He4 cryostat was used for 
providing temperature control.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/10/eaaz4074/DC1
Phase-locked loop
Training data for ANN
Symmetry and coupling
Lack of c33 jump
Resolving the origin of jumps
Compositions of resonances
Resistance measurement
Possible effects from parasitic antiferromagnetism
Table S1. Calculated discontinuities (“jumps”) in elastic moduli for one- and two-component 
OPs in a tetragonal system.
Fig. S1. Resonant ultrasound using phase-locked loop.
Fig. S2. Three representative resonance frequencies of URu2Si2 and their attenuation through THO.
Fig. S3. Elastic moduli of URu2Si2 with the contribution above THO subtracted.
Fig. S4. Fitting temperature evolution of resonances.
Fig. S5. Resistance of sample S2 measured from 300 K down to 2 K.
References (55–59)
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