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Abstract. A major question in Fe-based superconductors remains the structure
of the pairing, in particular whether it is of unconventional nature. The electronic
structure near a vortex can serve as a platform for phase-sensitive measurements
to answer this question. By solving the Bogoliubov–de Gennes equations for
LiFeAs, we calculate the energy-dependent local electronic structure near a
vortex for different nodeless gap-structure possibilities. At low energies, the
local density of states (LDOS) around a vortex is determined by the normal-
state electronic structure. At energies closer to the gap value, however, the LDOS
can distinguish an anisotropic s-wave gap from a conventional isotropic s-wave
gap. We show within our self-consistent calculation that in addition, the local gap
profile differs between a conventional and an unconventional pairing. We explain
this through admixing of a secondary order parameter within Ginzburg–Landau
theory. In-field scanning tunneling spectroscopy near a vortex can therefore be
used as a real-space probe of the gap structure.
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1. Introduction

The gap structure in the Fe-based superconductors and its possible unconventional nature is still
a key issue in the field 4 years after their discovery. In most compounds, the pairing is believed
to be of the so-called s± type, for which the order parameter changes sign between the electron-
like and the hole-like Fermi surfaces [1, 2]. Some experimental results are consistent with this
prediction [3–7]. However, a major difficulty in distinguishing such an unconventional pairing
state from a trivial s-wave gap is that both states are nodeless and transform trivially under
all the symmetry operations of the material’s point group. As the experimental probes that are
usually used to distinguish various gap structures, such as phase-sensitive probes, are not Fermi
pocket specific, an unambiguous evidence of the unconventional s± pairing remains evasive.

One route to accessing phase information using a phase-insensitive probe would be through
vortex bound states, as a vortex introduces a spatial texture to the superconducting order
parameter. Advancements in in-field scanning tunneling spectroscopy (STS) have enabled the
study of vortex bound states. Indeed, a recent STS experiment on LiFeAs under a magnetic
field has shown an intriguing energy dependence in the spatial distribution of the local density
of states (LDOS) near a vortex [8]. The remaining question is whether the observed LDOS
distribution near vortex can be instrumental in selecting one of the proposed gap structures:
s±-wave [1], s++-wave [9, 10], and (spin-triplet) p-wave [11, 12]. At zero bias, the LDOS shows
a four-fold star shape with high-intensity ‘rays’ along the Fe–As direction. Similar features
in NbSe2 [13] were interpreted as a sign of gap minima along this direction. However, a
quasi-classical analysis by Wang et al [14] pointed out that the normal-state band structure
of LiFeAs—namely a highly anisotropic hole pocket around the 0 point—could be producing
these rays irrespective of gap structure. By contrast, little attention has been given to the high
energy LDOS distribution observed in [8]: hot spots appearing at the intersection of split rays.

Motivated by these observations, we present a study of the near-vortex electronic
structure and signatures of unconventional pairing therein within the Bogoliubov–de Gennes
(BdG) framework. By (non-self-consistently) imposing a gap structure and solving the BdG
Hamiltonian, we first show that the isotropic s-wave and s±-wave pairing result in different
spatial distributions of the LDOS at energies approaching the gap value. In particular, we
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find s±-wave pairing to yield the observed hot spots. Then we solve the BdG equations self-
consistently, and based on our results propose detecting the spatial distribution of the gap
around a vortex for a more direct evidence of unconventional s±-wave pairing. A vortex not
only suppresses the order-parameter amplitude at its core and introduces a singular point in
space around which the phase of the order parameter winds, but it also induces a secondary
order parameter in its vicinity [15–19]. Due to the induced secondary order parameter near the
vortex, the gap recovery should show a strong angular dependence. Detection of such anisotropy
will be an unambiguous evidence of unconventional pairing.

The remainder of this paper is organized as follows. In sections 2 and 3, we introduce the
microscopic model and describe the BdG calculations, respectively. In section 4, we present the
results of the BdG calculations and discuss them within Ginzburg–Landau theory. In section 5,
we summarize our findings and remark on future directions. Throughout the paper we focus
on the large hole pocket and study the single band problem. However, we also present results
from non-self-consistent BdG calculations on a five-band model in section 4, which show good
agreement with observations from single-band model calculations in the energy range of our
interest.

2. Model

We describe LiFeAs in the superconducting state with the (mean-field) BdG Hamiltonian

HBdG
=

∑
i j

9
†
i

(
−ti j 1i j

1∗

i j t∗

i j

)
9 j . (1)

Here, 9i ≡ (ci↑, c†
i↓)

T is a Nambu spinor, and cis (c†
is) annihilates (creates) an electron at lattice

site i with spin s within a single-band model for the large hole pocket around the 0 point:
the so-called γ band. However, equation (1) can easily be generalized for a multi-band model.
In this paper, we focus on the single-band model for the most part since the superconducting
gap is the smallest on the γ band [21, 22] and hence we expect low energy physics to be
dominated by this band. Moreover, this band mainly stems from the (in-plane) dxy orbitals,
and thus shows little kz dependence [23]. It is therefore a natural choice for LiFeAs. Note that
previous BdG calculations on different Fe-pnictides focused on two-band models for the dxz/dyz

orbitals [24–29]. Our choice of the hopping matrix ti j is guided by the experimental observations
on the γ pocket [21, 22, 30] to be t = −0.25 eV for nearest-neighbor hopping, t ′

= 0.082 eV
for next-nearest-neighbor (NNN) hopping, and ti i = µ = 0.57 eV for the chemical potential.
Figure 1(a) shows the resulting Fermi surface in solid red line. Though we stay within this
single-band model for the self-consistent BdG studies, we have also used a five-band model for
the non-self-consistent calculation with tight-binding parameters from [20] to test the validity of
focusing on the γ band for the energy range of our interest (see section 4.2). Figure 1(a) shows
the Fermi surface of the five-band model in dashed lines.

The 1i j are the (bond) gap functions. For a self-consistent solution ofHBdG, we require the
gap functions to satisfy

1i j =
1

2
Vi j

〈
ci↓c j↑ + c j↓ci↑

〉
, (2)

where Vi j < 0 is the attractive interaction between sites i and j in the singlet channel, and
〈·〉 denotes the thermal expectation value. Restricting the interaction Vi j to a specific form
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(a) (b)

M

s-wave s -wave± d  -wavexy
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Figure 1. (a) Comparison of two tight-binding models for LiFeAs used in this
paper in the 1-Fe Brillouin zone. The dashed lines indicate the Fermi surfaces of
the five-band model from [20]. For the most part of this work, we focus on the
γ band that is around the 0 point, whose Fermi surface is shown as a solid line.
(b) Sketch of the three gap functions with s-, s±- and dxy-wave momentum
structure around the γ -band Fermi surface.

constrains the momentum structure of the gap function, since 1i j 6= 0 only if Vi j 6= 0. In the
uniform case, an on-site attraction Vi j = Uδi j leads to a spin-singlet s-wave gap 1(k) = 10

s ,
while a NNN attraction Vi j = V ′δ〈〈i, j〉〉 allows for the singlet gap functions of s± form, 1(k) =

410
s± cos kx cos ky , and dxy form, 1(k) = 410

dxy
sin kx sin ky . Figure 1(b) shows sketches of these

gap functions. We restrict our calculations in the following to these ‘pure’ gap structures.
Even though the true gap function is a (symmetry-allowed) mixture of such gap functions, the
dominant channel (on-site or NNN interactions) will determine whether an s±- or an s++-wave
gap is realized in the presence of the electron pockets.

For the non-self-consistent BdG study, the vortex will be imposed through the gap-function
configuration of

1i j = 10 tanh(|ri j |/ξ) eiθi j , (3)

where the vector ri j points to the midpoint of sites i and j , and θi j is its azimuthal angle
measured from the Fe–Fe direction. This corresponds to a single vortex located at the origin
suppressing locally the order-parameter amplitude. In addition, the order-parameter phase winds
around the vortex core.

For the self-consistent BdG study, we induce the vortices by applying a magnetic field H ẑ.
Assuming minimal coupling between an electron and the field, the hopping between sites i and
j acquires a Peierls phase

ti j −→ ti j eiϕ(ri ,r j ), ϕ(ri , r j) ≡ −
π

80

∫ ri

r j

A(r) · dr, (4)

where 80 = h/2e is the magnetic fluxoid and ri is the vector pointing to the site i . We assume
a uniform magnetic field H and write the vector potential in the Landau gauge A(r) = −H yx̂.
From the self-consistent solution 1i j , we can define local gap order parameters of different
symmetries. For an on-site interaction, the local s-wave order parameter is defined as 1s(r) =

1r,r. Note that from here on, we use r without any site index to denote both a lattice site and the
vector pointing to it in units of the lattice constant a0. With NNN interaction, we define local
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order parameters of s± form

1s±(r) =
1

4
[1̃r+(1,1),r + 1̃r+(1,−1),r + 1̃r+(−1,−1),r + 1̃r+(−1,1),r] (5)

and dxy form

1dxy(r) =
1

4
[1̃r+(1,1),r − 1̃r+(1,−1),r + 1̃r+(−1,−1),r − 1̃r+(−1,1),r], (6)

where 1̃rr′ ≡ 1rr′ exp[−iϕ(r, r′)] ensures that order parameters of different symmetries do not
mix under magnetic translations. Note that for the uniform case, 1s(r) = 10

s , 1s±(r) = 10
s± , and

1dxy(r) = 10
dxy

as defined above.

3. Method

In this section, we elaborate on our two approaches to solve the BdG equations and obtain the
LDOS near a vortex. For both, diagonalizing the HamiltonianHBdG in equation (1) for a system
of size (Nx , Ny) is computationally the most expensive part.

3.1. Non-self-consistent approach

For the non-self-consistent calculation, we impose a gap function in the form given
by equation (3) and find the low lying eigenvalues and eigenstates of HBdG using the
Lanczos algorithm2. The LDOS can be calculated from the eigenenergies En and eigenstates
[un(r), vn(r)] as

N (r, E) =

∑
n

|un(r)|2δ(E − En) + |vn(r)|2δ(E + En). (7)

Since we are not interested in the absolute value of the LDOS but rather in the spatial profile at
a given energy, we normalize the LDOS such that for a given energy E , the maximum value of
N (r, E) is unity.

3.2. Self-consistent approach

For the self-consistent calculation, we assume initial gap functions and use the eigenvalues and
eigenvectors of equation (1) to calculate the gap functions given by equation (2). We proceed
iteratively until self-consistency is achieved. In diagonalizingHBdG, we can no longer make use
of the crystal momentum basis to simplify the problem since the Peierls phase factor prevents
the kinetic part of the Hamiltonian from commuting with the ordinary lattice translation operator
TR. However, the kinetic part commutes with the magnetic translation operator

T̂R ≡ e−i π
80

A(R)·rTR (8)

for a magnetic lattice vector R whose unit cell contains two magnetic fluxoids.
The pairing term in general does not commute with T̂R. Nevertheless, when vortices form a

lattice, T̂R commutes with the pairing term when R is a vector of a vortex sublattice containing
every other vortex. Since we focus on the electronic structure near a single vortex, we expect

2 We suppress low energy states from forming at the boundary by imposing an on-site potential of 10 eV to the
sites at the boundary.
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the shape of the vortex lattice to have little influence on our results. Therefore, we make an
arbitrary choice for its primitive vectors to be L x x̂ and L y ŷ, such that R forms a rectangular
lattice R = (mx L x , m y L y), where mα = 0 · · · Mα − 1 and Mα ≡ Nα/Lα.3 Note that periodic
boundary conditions in the Landau gauge A(r) = −H yx̂ require the total magnetic flux through
the system to be an integer multiple of 280 Nx . In addition, one magnetic unit cell contains
a magnetic flux of 280, i.e. H = 280/L x L y . We satisfy these two requirements by choosing
Mx = L y , My = L x .

Working with the magnetic Bloch states

9k(r) =

∑
R

e−ik·R T̂R9(r)T̂ −1
R (9)

allows us to block diagonalize the Hamiltonian

HBdG
=

1

Mx My

∑
k

∑
r,r′

9
†
k(r)Hk(r, r′)9k(r′). (10)

The indices k and r from here on are defined in the magnetic Brillouin zone and magnetic unit
cell, respectively, that is

k =

(
2π

mx

L x Mx
, 2π

m y

L y My

)
, mα = 0 · · · Mα − 1, (11a)

r =
(
`x , `y

)
, `α = 0 · · · Lα − 1. (11b)

By diagonalizing the matrices Hk of dimension 2L x L y × 2L x L y in equation (10), we can
compute the eigenstates and eigenenergies of HBdG. These are then used to calculate 1i j with
equation (2) closing the self-consistency cycle. Finally, we use the self-consistent solution 1i j

to calculate the local order parameters of s-, s±- and dxy-wave symmetry and also the LDOS of
the electronic degrees of freedom, as defined in equation (7).

4. Results

4.1. Non-self-consistent approach on single band model

Figure 2 shows the near-vortex LDOS calculated by diagonalizing HBdG of equation (1)
with fixed gap functions as given by equation (3) on a system of dimension (Nx , Ny) =

(301, 301). We choose realistic values of the parameters for the coherence length ξ =

16.4a0 [31, 32], as well as gap values 10
s = 3 meV for on-site pairing and 10

s± = 1.5 meV for
NNN pairing [21, 22, 30].

We can interpret the vortex bound states in this non-self-consistent BdG calculation as
bound states in a potential well given by equation (3), where only states around the normal-state
Fermi surface constitute the bound states. There are then two sources of anisotropy: anisotropic,
quasi-one-dimensional low-energy properties of the normal state, and an anisotropic gap, both
defined in the momentum space. The geometric distribution of LDOS will be dominated by one
or the other source of anisotropy at different energies.

3 This choice yields an oblique vortex lattice, since there are two vortices in each (rectangular) magnetic unit cell,
trying to form a triangular vortex lattice as a self-consistent solution.
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 2. LDOS near a vortex for the non-self-consistent calculation with the
gap function given by equation (3). The value N (r, E) has been normalized
such that the maximum value in each map is unity. Panel (a) shows the LDOS
at the lowest bound state energy with on-site pairing with 10

= 3 meV, and (e)
is at higher energy. Panels (b) and (f) are with NNN pairing with 10

= 1.5 meV.
The left insets in (a), (b), (e) and (f) indicate the local structure of the pairing,
and the right insets are LDOS after Gaussian filtering (σ = 3a0) reducing spatial
resolution for better comparison with experiment [8]. Panels (c) and (g) are the
near-vortex LDOS maps observed in [8]. Panel (d) is the LDOS as a function
of energy at the vortex core for the on-site pairing, Gaussian-filtered in both
energy (σ = 0.15 meV) and position (σ = a0). Panel (h) shows the experimental
tunneling spectra from [8] for comparison.

At low energies, the normal state properties dominate the distribution of LDOS (figures 2(a)
and (b)). Hence irrespective of pairing structure, the bound state is located at the center of the
potential well. Since the Bloch states making up this bound state have two main velocities
due to the quasi-one-dimensional parts of the Fermi surface, the bound state mainly extends
in these two directions out of the well, resulting in the rays in figures 2(a) and (b). The gap is
suppressed near the vortex center, and its anisotropy is of little importance. Hence the flat (quasi-
one-dimensional) parts of the electronic structure in figure 1(a) (solid line) dominate over the
small anisotropy of the s± gap (see figure 1(b)). For a better comparison with experiment, we
present results of reduced spatial resolution by Gaussian filtering (σ = 3a0) in the insets. The
low resolution result is consistent with results of the quasi-classical analysis by Wang et al [14]
and in good agreement with experiment shown in figure 2(c).

At higher energies on the other hand, the bound state is located away from the vortex core.
The quasi-one-dimensionality of the Fermi surface allows for localization in one direction and
extension in the other. This leads to a square-like inner ring in the LDOS for both pairings
(figures 2(e) and (f)). The difference, however, results from the anisotropy of the gap function.
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While the isotropic s-wave gap is analogous to a potential that is independent of momentum, the
anisotropic gap is one for which different states around the Fermi surface experience different
potentials depending on their momenta. With the gap function of s± form, the quasi-one-
dimensional portion of the Fermi surface experiences a stronger trap potential, leading to a
suppression of its contribution to the bound-state wave function. As a result, the bound state
exhibits pronounced isolated segments, ‘hot spots’, within the inner ring that point in the Fe–Fe
direction, as shown in figure 2(f). We again Gaussian filter the images and show them in the
insets. Note the ‘hot spot’ are robust and even more pronounced in the low resolution insets in
figure 2(f) in good agreement with the experimental data figure 2(g).

We now turn to the LDOS at the core of the vortex and its particle–hole asymmetry. This
turns out to be largely insensitive to anisotropy of pairing. The LDOS at the core of the vortex
for the on-site pairing shown in figure 2(d) exhibits particle–hole asymmetry with the highest
peak at negative energy. Such asymmetry appears in the so-called ‘quantum-limit’ vortex bound
state [33], whose highest LDOS peak is at energy 12/2EF above(below) the Fermi energy for
an electron(hole)-like band, where EF is the energy difference between the Fermi energy and the
bottom(top) of the band. The energy of the LDOS peak being 0.05 meV below the Fermi energy
is expected given EF = 98 meV and 1 = 3 meV within our input bandstructure. Though similar
particle–hole asymmetry has been observed in [8] (see figure 2(h)) the energy at which the peak
was observed suggests that other hole pockets with larger gap values may be responsible.

4.2. Non-self-consistent approach on five band model

Now, we check whether the single-band model is sufficient to describe vortex bound states
within the energy range of interest. A simple insight can be gained by treating each band
independently and estimating the energy of its lowest bound state to be 12/2EF following
Caroli et al [33] for the gap size 1 and the Fermi energy EF specific to each band. Using
measured Fermi energies and gap parameters [10, 21, 22, 30], we estimate the energies of the
lowest bound states of the γ pocket and the electron pockets to be of the same order. However,
the lowest bound state energies of the two smaller hole pockets are an order of magnitude
larger. This rough estimate implies that the LDOS within the energy below 1 meV should be
dominated by bound states coming from the γ band and those coming from the two electron
bands. If indeed each bound state comes from a single band, we expect to find bound states with
LDOS distribution resembling what we predicted in section 4.1.

For concreteness, we carry out a non-self-consistent BdG calculation using the band
structure given by [20] with five bands. Unfortunately, the γ -pocket Fermi surface of this band
structure (dashed line in figure 1(a)) is far more isotropic compared to what has been measured
in [30] and guided the band structure we use in the rest of this paper. Hence we do not expect
as pronounced ‘ray’ features at low energies compared to what is shown in figure 2 from our
(single-band) calculations and experiment. Another issue we face with a five-band calculation
is the limitation on the accessible system size. For a system of size (101, 101), we impose NNN
pairing that is trivial in the orbital space having magnitude 1s± = 15 meV in order to fit the
vortex bound states within the system and minimize the boundary effect. As in the single-band
calculation, we create a vortex at the center of the form given in equation (3), however with
ξ = 10a0. Figure 3 shows the resulting LDOS at different bound state energies. At the lowest
energy there is no clear sign of ‘rays’ though a small amount of anisotropy is still present, as
expected from the smaller γ -band anisotropy (see figure 3(a)). Figures 3(b) and (c) show typical
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(a) (b) (c)

Figure 3. LDOS near a vortex from the non-self-consistent calculation with
the five-band model from [20] and NNN pairing of 10

s± = 15 meV, (a) at the
lowest bound state energy, (b) at an energy where the electron-band contribution
dominates and (c) at an energy where the γ -band contribution dominates.

(a) (b) (c) (d)

Figure 4. LDOS near a vortex within our self-consistent calculation. Again,
N (r, E) is normalized within each image. Panel (a) is the LDOS at the lowest
bound state energy with on-site attraction U = −0.35 eV, and (c) is at higher
energy. Panels (b) and (d) are with NNN attraction V ′

= −0.3 eV. The inset
in each figure represents the local attractive interaction in the singlet pairing
channel.

LDOS images of vortex bound states at higher energies. Figure 3(b) looks very different from
the LDOS distribution obtained in section 4.1 and we hence assign the corresponding bound
state to the electron pockets. However, the LDOS shown in figure 3(c) shows the same ‘hot
spots’ as obtained within our single-band calculation and shown in figure 2(f). Focusing on the
γ band should thus suffice to capture the features observed in [8].

4.3. Self-consistent approach

Figure 4 shows the results from the (single-band) self-consistent calculation. We compare two
pairing interactions—on-site attraction U = −0.35 eV, and NNN attraction V ′

= −0.3 eV—for
a system with magnetic unit cell of dimensions (L x , L y) = (19, 38). This corresponds to a full
lattice size of (Nx , Ny) = (38 × 19, 19 × 38). In zero field, the two cases lead to a uniform
superconducting gap of 10

s = 27 meV and 10
s± = 10 meV, respectively. We have chosen U and

V ′ such that the coherence length ξ ∝ 1−1 is small compared to the inter-vortex spacing. This
allows us to focus on a nearly isolated vortex within the computationally feasible size of the
magnetic unit cell. Although the resulting gap values are an order of magnitude larger than

New Journal of Physics 15 (2013) 053048 (http://www.njp.org/)

http://www.njp.org/


10

(a) (b) (c)

Figure 5. Spatial distribution of different symmetry components of order
parameters. (a) 1s(r) for on-site attraction U = −0.35 eV. (b) 1s±(r) and
(c) 1dxy(r) for NNN pairing V ′

= −0.3 eV. The values have been normalized
by the value of the dominant order parameter in the absence of magnetic field
for each case: 10

s for (a), and 10
s± for (b), (c). The equal-amplitude contours in

red go from 0.825 for the innermost to 0.925 for the outermost contours (after
normalization) with equal intervals between the contours in between. The insets
again indicate the structure of the local order parameter. Note that the color-scale
for 1dxy(r) is much smaller than for 1s(r).

what is known experimentally, this should not affect the validity of the results in a qualitative
manner. Both at low energy and at higher energy close to the gap value, we observe features that
qualitatively agree with the results obtained in the previous section.

The self-consistent calculation also allows us to study the local order parameters of a given
structure near a vortex. Unlike for the on-site attraction, where 1s(r) is the only allowed gap
function, order parameters of different symmetries can mix near a vortex for NNN attraction.
A near-vortex map of 1s(r) for on-site pairing shown in figure 5(a) indeed shows almost
isotropic healing of the order parameter away from the vortex core. However, for the NNN
attraction which leads to uniform s±-wave pairing in zero-field, the secondary order parameter
1dxy(r) is induced near the vortex. Coupling between this secondary order parameter and the
primary 1s±(r) leads to a strong angular variation of both components as can be seen in
figures 5(b) and (c).

To gain further insight into the admixing of a secondary order parameter near a vortex for
the anisotropic pairing, we analyze the Ginzburg–Landau free-energy density. The free-energy
density for s-wave and d-wave order parameters reads

f = αs|s|
2 + αd |d|

2 + β1|s|
4 + β2|d|

4 + β3|s|
2
|d|

2 + β4(s
∗2d2 + c.c.) + γs| EDs|2 + γd | EDd|

2

+γv(Dxs Dyd∗ + Dys Dxd∗ + c.c.), (12)

where s and d are shorthands for s(r) and d(r), the order-parameter fields for the s± and dxy

gaps, respectively, and Di = ∂i − ieAi is the covariant derivative. The fields s(r) and d(r) can
be thought of as 1s/s±(r) and 1dxy(r) after coarse graining. This type of admixing near a vortex
has previously been studied in the context of cuprates, leading to the prediction of a fourfold-
anisotropic order parameter around a vortex [15–18].4 As the large halo around vortices in

4 The microscopic model we consider is related to the single-band model of cuprates through rotation by 45◦, the
roles played by s-wave and d-wave order parameters are reversed and our d-wave order parameter is of dxy form
rather than dx2−y2 .
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cuprates [34] hindered the observation of this admixing, LiFeAs presents an opportunity for
this observation.

The spatial variation of the secondary component dxy in figure 5(c) is largely due to the
derivative coupling, the term proportional to γv in equation (12). This intermixing term is
expected to be large when the s-wave order parameter is of s± type, since the same NNN
pairing interaction is responsible for both s-wave and d-wave order parameter. For |s| � |d| and
| EDs| � | EDd| the spatial structure of the dxy component is determined largely by the structure of
the s-wave component. Minimizing equation (12) with respect to d(r) and keeping only terms
up to linear order in d(r), we find

−γd ED2d + αdd + β3|s|
2d + β4s2d∗

= γv(Dx Dy + Dy Dx)s. (13)

Hence, the curvature in the leading s-wave component will induce the secondary (dxy)
component. Now, consider a single isolated vortex. As s(r) is recovered at the length scale of the
coherence length ξ away from the core of the vortex, we expect a large d(r) due to coupling to
the large curvature of s(r) at this distance. Since ξ = h̄vF/π1 ∼ 3.0a0 for the uniform gap value
with V ′

= −0.3eV, this is in agreement with the positions of the maxima of d(r) in figure 5(c)
as a function of |r| setting the vortex core at the origin. We can also explain the angular variation
and the form of the anisotropy of d(r) in this framework. If we assume s(r) = f (r)eiθ with a
slowly changing f (r) and the azimuthal angle θ measured from the Fe–Fe direction, we find
from equation (13)

d(r) ∼ ∂x∂ys(r) ∼ e−iθ(1 + 3 e4iθ), (14)

ignoring the phase due to the magnetic field. The structure of the derivative hence gives rise to
a four-fold anisotropy, which explains the fact that |d(r)| is maximum in the Fe–Fe direction,
while it is suppressed along the 45◦ direction. Coupling to d(r) gives then in turn cause for the
four-fold anisotropy in s(r).

5. Conclusion

We have contrasted the effects of anisotropic s±-wave (NNN) pairing and isotropic s-wave
(on-site) pairing on the near-vortex LDOS in LiFeAs by solving BdG equations both non-
self-consistently and self-consistently. We have found qualitative changes in the geometric
distribution of the density of states as a function of energy. At low energies, the anisotropy
of the vortex bound state, and hence the LDOS, is determined by the normal state low energy
electronic structure, independent of the gap structure. Different pairing structures, however,
lead to qualitatively different LDOS distributions at higher energies: while the isotropic s-wave
shows a square-like feature of roughly equal intensity, four ‘hot spots’ develop in the case of an
(anisotropic) s±-wave gap. Indeed, our results for the latter case qualitatively agree with recent
experiments [8].

From the self-consistent treatment we have further found a difference in the recovery of the
order parameter away from the vortex core: a pronounced angular dependence of the s±-wave
gap compared to isotropic behavior for the s-wave gap. Employing a Ginzburg–Landau analysis,
we have explained this difference through admixing of a secondary order parameter supported
by the NNN interaction. Note that such intermixing is negligible for an s-wave pairing with a
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dominant on-site pairing interaction, as no other pairing instabilities are nearby. For the NNN
interaction, however, s±- and dxy-wave instabilities have comparable transition temperatures.
Detection of the anisotropy or even the secondary order parameter would be a strong proof of
the unconventional nature of the pairing.

In this work, we focused on the γ band with interest in low energy properties, as this is the
band with the smallest gap [21, 22]. Hence, for features at energies less than the gap scale, we
expect our calculation to capture salient features of in-field STS experiments. The comparison
between the calculated LDOS for the single- and the five-band models and the results in [8]
supports this conjecture.

In closing we note that our calculation captures Friedel-like oscillations, frequently referred
to as quasi-particle interference (QPI), due to vortices. QPI in the presence of vortices was
successfully used to access phase information with STS in cuprates [35]. Recent in-field QPI
experiments on FeSe have been interpreted to be consistent with an s± scenario when a vortex
is treated as a magnetic scatterer for BdG quasiparticles [4]. However, a vortex is at once a point
of gap suppression, a point with magnetic flux, and a point around which the order-parameter
phase winds. While we treated vortices faithfully in the self-consistent calculation, we could not
investigate effects of inter-pocket sign change as we only considered one pocket. An extension
of the present work with the full band structure would be necessary to work out what to expect
for different order-parameter possibilities, especially how the phase difference between different
pockets affects in-field QPI.
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