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We study the dynamical behavior of a damped pendulum under parametric forcing, which exhibits
various chaotic dynamics characterized by the rotation number: oscillating, rotating, and tumbling
chaos. The analysis of the detailed bifurcation diagram together with the rotation number reveals
the existence of multiple types of rotational onset. At relatively high forcing frequencies, the system
successively undergoes a hysteretic rotational onset from oscillating chaos to periodic rotation due to
bistability and a non-hysteretic onset from rotating chaos to tumbling chaos. The onset mechanism
of the latter is found to result from an interior crisis and an attractor merging crisis. On the other
hand, at relatively low forcing frequencies the system exhibits a direct non-hysteretic onset from
periodic oscillation to tumbling chaos, arising from a tangency crisis. This reveals the complex
structure of the phase diagram at low forcing frequencies.
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I. INTRODUCTION

The dynamical properties of a nonlinear pendulum
have attracted much interest since the discovery of chaos
under appropriate conditions. In particular, periodic dis-
placement of the suspension point along the vertical di-
rection leads to periodic variation of the effective grav-
itational field, and the resulting parametrically forced
pendulum [1,2] models many physical systems including
a magnetic pendulum under ac and dc magnetic field [3,
4], and related problems of Josephson junctions and neu-
rons under stimuli [5–8]. Despite the apparent simplic-
ity of the equation of motion, the parametrically forced
pendulum is known to display rich dynamical behavior
including chaos. For relatively weak forcing, the system
was studied mostly by means of the Poincaré section, and
period-doubling bifurcations to a small chaotic attractor
were found both numerically [9,10] and analytically [11],
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and were also observed in experiments [12,13]. As the
forcing amplitude is increased further, the appearance of
a transition to a large chaotic attractor was reported [2,
9,10,12], and the Lyapunov exponent was also computed
[10]. Further, oscillatory solutions were investigated and
shown to be a generic example of the system permitting
escape from a symmetric potential well [14]. As to the
rotating modes, unstable periodic orbits were analyzed
numerically and experimentally [15], whereas the inter-
mittent region with a large chaotic attractor was used to
locate sub-harmonic orbits [16].

The full understanding of the underlying dynamics
of the parametric pendulum is still far from complete.
In a recent study of the system with weak dissipation,
the possibility of three types of chaotic motion has been
pointed out: oscillating chaos, rotating chaos, and tum-
bling chaos. Among these, tumbling chaos appears to
be ubiquitous [17]. On the other hand, oscillatory and
rotating chaos have been observed in regions of the pa-
rameter space which are too small to be identified un-
ambiguously. Hence, the possibility and the mechanism
of different types of onset depending on the amplitude
of parametric forcing have not been fully explored, al-
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though it has been speculated that an increase of the
driving force can have effects analogous to a decrease
in damping, such as to result in an attractor merging
crisis [18]. As noted, there is a close correspondence
between these chaotic phases and the dynamical states
of a Josephson junction with different voltage drops or
different firing states of a neuron. The parametric os-
cillator can thus serve as a good model system to study
the mechanism of various types of onset also observed in
related problems of Josephson junctions or neurons un-
der stimuli, which has been the subject of great interest
recently.

Our prime focus in the present work is to understand
how a typical nonlinear system such as the parametric os-
cillator exhibits different types of rotational onset, by us-
ing the rotational number approach in combination with
bifurcation diagrams [19]. We use the rotation number as
an order parameter to characterize distinct chaotic states
and present a detailed study of diverse onset mechanisms
exhibited by the parametric pendulum in the presence of
moderate dissipation, as well as the quantitative nature
of each chaotic states. The system is observed to fol-
low two different typical routes to tumbling chaos: one
is to successively undergo a hysteretic onset from oscil-
lating chaos to periodic rotation due to bistability and
a non-hysteretic onset from rotational chaos to tumbling
chaos. The investigation of power spectra, together with
the measurement of dimensions of the attractors and of
the basin boundary, reveals the onset mechanism of the
latter to be an attractor merging crisis. In addition,
there also exists another typical route via which the sys-
tem exhibits a direct onset from periodic oscillation to
tumbling chaos, arising from a tangency crisis.

This paper consists of four sections: Section II intro-
duces the system and presents the phase diagram ob-
tained from consideration of the rotation number. Three
different chaotic states are identified according to the
rotation number, and sections of the phase diagram at
certain forcing frequencies with two typical routes are
also displayed. Section III is devoted to the study of the
mechanism of various onsets which appear in the two
sections of the phase diagram. Investigation is carried
out by means of bifurcation diagrams, Poincaré sections,
and basins of attraction. The correlation dimension of
the chaotic attractor and the uncertainty dimension of
the basin boundary are also calculated. Additionally,
the intermittent mode after the crisis is examined, and
the power spectrum right after the crisis is observed to
scale approximately as 1/f over several decades in the
frequency f . Finally, a brief summary is given in Section
IV.

II. ROTATION NUMBER AND PHASE
DIAGRAM

The parametric pendulum is described by the second-
order non-autonomous ordinary differential equation in
dimensionless form [1]

d2θ

dt2
+ q

dθ

dt
+ (1 + 2F sin Ωt) sin θ = 0, (1)

where θ represents the angular position, q the damping
coefficient, F the forcing amplitude, and Ω the forcing
frequency. Equation (1) can be reduced to a set of cou-
pled first-order equations:

dθ

dt
= ω

dω

dt
= −qω − (1 + 2F sin Ωt) sin θ, (2)

which constitute the equations of motion governing the
time evolution of the system.

In search of different types of onset, we calculate the
rotation number

ρ ≡ 〈θ̇〉
Ω

= lim
t→∞

θ(t)− θ(0)
Ωt

, (3)

as the parameters are varied in a region of the F−Ω pa-
rameter space. It is obvious that the rotation number
ρ vanishes identically for periodic oscillations and takes
non-zero values for periodic rotations. In the realm of
chaos, the behavior of the rotation number also charac-
terizes three types of chaos [19]:

1. Oscillating chaos. The rotation number is well de-
fined to be identically zero, i.e. ρ = 0.

2. Rotating chaos. The rotation number has a well
defined non-zero value, i.e. ρ 6= 0.

3. Tumbling chaos. The rotation number is not well
defined, exhibiting fluctuations. Instead, one may
define the rotation interval of non-zero measure,
within which the rotation number fluctuates.

Accordingly, one can obtain the phase diagram in the
parameter space by measuring the rotation number with
the parameters varied in appropriate ranges.

In the numerical calculation presented here, we eval-
uate the rotation number approximately according to
ρ ≈ ρn ≡ (nT )−1[θ(nT ) − θ(0)] with T ≡ 2π/Ω and
for a large integer n. To obtain the phase diagram, we
integrate Eq. (2) numerically for n = 500 periods via
the fourth-order Runge-Kutta algorithm with double-
precision arithmetic (15 significant digits) and each forc-
ing period divided into 100 time steps. Then ρn is com-
puted on the 400 × 400 grid of the forcing amplitude F
and frequency Ω, after the transient data during the first
200 forcing periods have been discarded, for the system
to reach stationarity. Here, the ranges of the parameters
are chosen to match those in existing numerical stud-
ies cited before, while the damping coefficient is fixed at
q = 0.2. Note the rather large value of q compared with
the value adopted in the existing work [17]; this helps to
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Fig. 1. Rotation number ρ on the F−Ω plane, display-
ing various types of onset: periodic oscillation → oscillating
chaos; periodic rotation→ rotating chaos→ tumbling chaos;
periodic rotation → tumbling chaos.

manifest rotating and oscillating chaos more clearly and
allows a study of the nature of different types of onset.

The phase diagram obtained in this way is shown in
Fig. 1, where plateaus of zero and non-zero heights repre-
sent oscillatory and rotational motions, respectively. Al-
though the rotation number alone does not distinguish
chaotic motion from periodic motion, it still gives enough
information on different types of onset present. For ex-
ample, the appearance of tumbling chaos is represented
by the wiggling region in Fig. 1. Comparing this with the
zones of chaotic behavior for smaller damping shown in
Fig. 5 of Ref. 17, one observes that qualitative features
of the two figures coincide and the primary mode-locked
state occupies a wide region. On the other hand, the
region of tumbling chaos with windows of other stable
motions has a more complex structure than the robust
zone of tumbling chaos. Indeed, Fig. 1 exhibits quite
complex structure consisting of rotating and tumbling
chaos together with oscillating motion in the zone of low
forcing frequencies (Ω . 1.0); this region has not been
explored in Ref. 17. Furthermore, close observation of
Fig. 1 reveals the existence of two different types of on-
set leading to tumbling chaos, as the forcing amplitude
F is increased at constant forcing frequency Ω: (1) Suc-
cession of a hysteretic onset from oscillatory chaos to
periodic rotation due to bistability and a non-hysteretic
onset from rotational chaos to tumbling chaos; (2) Di-
rect onset from periodic oscillation to tumbling chaos.
The former is displayed in Fig. 2(a), corresponding to
the section of the phase diagram at Ω = 2.0, whereas the
section at Ω = 0.732, shown in Fig. 2(b), displays the
latter.

III. CHAOTIC TRANSITIONS

To investigate the nature of the two types of onset
observed in Sec. II, in this section we examine bifur-
cation diagrams along the corresponding sections of the

Fig. 2. Rotation number ρ versus forcing amplitude F ,
obtained from sections of the phase diagram in Fig. 1. Solid
and dashed lines represent the behavior as F is raised and re-
duced, respectively. Observed are different types of rotational
onset for (a) Ω = 2.0 and (b) Ω = 0.732.

phase diagram and analyze the attractors in the phase
space. We first look into the section Ω = 2.0, where the
first type of onset is observed. To obtain the bifurca-
tion diagram, we again integrate Eq. (2) numerically at
each value of F , discarding the transient data during the
first 500 periods until the system reaches the stationary
state. The angular speed ω is then recorded whenever Ωt
becomes an integer multiple of 2π during the next 500
periods.

Figure 3 displays the resulting bifurcation diagram
at Ω = 2.0. As the forcing amplitude F is increased,
a symmetry-breaking pitchfork bifurcation occurs at
F = 0.66463 after the period-doubling bifurcation to
the period-two oscillation, and the stable orbit leads
to oscillatory chaos through the typical period-doubling
cascade. Note also the presence of the bistability be-
tween the oscillation undergoing the cascade and the pe-
riodic rotation, the broken-symmetry state in the region
0.41680 < F < 0.71722, which results in a hysteretic
onset. The bistable periodic rotation and the cascade to
oscillating chaos are shown in more detail in the insets of
Fig. 3. The broken-symmetry rotating solution under-
goes a period-doubling cascade to rotating chaos, which
grows in size with the forcing amplitude, and finally col-
lides with the chaotic saddle at F = 1.03659. At this
point both of the two symmetry-related rotating chaotic
attractors become meta-stable and all three sets merge
to a tumbling chaotic attractor. Hence the onset mecha-
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Fig. 3. Bifurcation diagram for Ω = 2.0. The system un-
dergoes a succession of hysteretic onset from oscillating chaos
to periodic rotation and non-hysteretic onset from rotating
chaos to tumbling chaos. The details of the two onsets are
illustrated in the two magnified insets (a) and (b) with no
scales, respectively. Note that in (a) the conjugate attractor
under reflection symmetry is shown instead.

nism from rotating chaos to tumbling chaos turns out to
be the attractor merging crisis [20]. A similar transition
from chaotic rotation to tumbling chaos has also been
explored in the context of symmetry-restoring attactor
merging crisis for a magnetic pendulum with a zero dc
component [4].

To obtain the chaotic attractor, we integrate Eq.
(2) from an arbitrary initial condition over 500 forc-
ing periods and plot the Poincaré sections taken at
Ωt = 0 (mod 2π), after the first 100 periods. The re-
sulting figure shows the tumbling chaotic attractor in
thick points in Fig. 4(a), which contains a large num-
ber of points corresponding to the intermittent motion
of the system between the precrisis chaotic saddle and
two small precrisis rotating chaotic attractors in addi-
tion to the three chaotic sets themselves. This verifies
the speculation in Ref. [18] that the system will expe-
rience an attractor merging crisis if the driving force is
varied instead of damping, with a larger driving force
playing the role of low damping. The correlation di-
mension [21] of the tumbling chaotic attractor right af-
ter the crisis, shown in Fig. 4(a), is calculated to be
d = 1.37±0.03, which is substantially larger than the di-
mension d = 1.24±0.08 of the rotating chaotic attractor
just before the crisis at F = 1.036. We also performed
similar simulations starting from the initial conditions
on the 230 × 200 grid in (θ, ω), where the computation
of short-term rotations reveals no correlated structure in
the phase space. The well-known crisis-induced inter-
mittency, namely, the characteristic temporal behavior
of intermittent switching [20] between precrisis attrac-
tors accompanied by the attractor merging crisis, is also
observed here and the power spectrum right after the
crisis exhibits 1/f -dependence, as shown in Fig. 4(b).
The least-square fit to the form f−α gives the exponent
α = 1.026±0.001 at low frequencies, over more than two

Fig. 4. Tumbling chaos at F = 1.0367 in the phase space
and the corresponding power spectrum. (a) The tumbling
chaotic attractor is shown in thick points. The gray points de-
note those for short-term clockwise rotation, which reveal no
correlated structure. (b) The power spectrum S(f) right af-
ter the crisis displays 1/f behavior for more than two decades
in frequency f . The slope of the dotted line is unity.

Fig. 5. Bifurcation diagram for Ω = 0.732. The system un-
dergoes a non-hysteretic direct onset from periodic oscillation
to tumbling chaos.

decades in frequency f .
We now examine the section Ω = 0.732, where the



-522- Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004

second type of onset is observed. Figure 5 displays the
bifurcation diagram at Ω = 0.732, which is obtained in
the same manner as Fig. 3. Although we are unable to
decide from the bifurcation diagram whether the chaotic
state in the region 0.7125 < F < 0.9160 corresponds to
tumbling chaos or oscillating chaos, fluctuations of the
rotation number observed in the same region of Fig. 1
indicate that the onset at F = 0.7125 is actually a direct
one. The mechanism of this direct onset appears to be
the heteroclinic tangency crisis due to the tangency of the
stable manifold and the unstable manifold of unstable pe-
riodic orbits (0,−π) and (0, π). The bifurcation diagram
also reveals that, instead of being predominant after the
onset, tumbling chaos is apparent only in rather nar-
row regions between oscillations or rotations, reflecting
the complex structure of the phase diagram. Tumbling
chaotic regions always give ways to periodic rotations or
oscillations due to the boundary crisis, while they emerge
via the interior crisis or the attractor merging crisis.

IV. SUMMARY

A damped parametrically forced pendulum is a clas-
sical example of the forced nonlinear oscillator, and its
behavior represents a large class of systems including the
magnetic pendulum in a dc and ac magnetic field and
related problems of driven Josephson junctions and neu-
rons under stimuli. We have studied different types of
possible onset in the parametrically forced pendulum, as
the forcing amplitude is increased. It has been noted that
the rotation number may be taken as an order param-
eter characterizing different types of chaos, which can
be further clarified in combination with the analysis of
bifurcation diagrams.

Accordingly, the phase diagram has been empirically
obtained from the efficient computation of the rotation
number. This reveals the complex structure in the re-
gion of low forcing frequencies, previously regarded as
the zone of tumbling chaos, together with the existence of
two types of onset. Each of the onsets has been examined
by means of the bifurcation diagram, with the forcing fre-
quency fixed at values for typical behavior: Ω = 2.0 and
Ω = 0.732. At Ω = 2.0, the system has been observed to
undergo two successive onsets, one from oscillating chaos
to periodic rotation and the other from rotating chaos to
tumbling chaos. The former is a hysteretic onset due to
bistability, whereas the non-hysteretic onset mechanism
of the latter turns out to be an attractor merging crisis.
Between these onsets, there are period-doubling bifur-
cations to oscillating or rotating chaos. The correlation
dimension of the attractors was measured before and af-
ter the crisis. In addition, the power spectrum right af-
ter the crisis, where the crisis-induced intermittency is
manifested, has been found to display 1/f behavior for
more than two decades. At Ω = 0.732, on the other
hand, the system experiences a direct onset from peri-

odic oscillations to tumbling chaos, the onset mechanism
of which turns out to be a heteroclinic tangency crisis.
However, tumbling chaos is not robust after the onset:
Regions of oscillations or rotations are widely found, due
to the boundary crisis, and tumbling chaos occupies only
rather narrow regions in between. Further investigation
is needed to obtain a full understanding of such a com-
plex structure in the phase diagram.
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