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Fractional correlated insulating states at one-third
filled magic angle twisted bilayer graphene

Kevin Zhang® '™, Yang Zhang® 2, Liang Fu® 2 & Eun-Ah Kim'

The observation of superconductivity and correlated insulating states in twisted bilayer
graphene has motivated much theoretical progress at integer fillings. However, little attention
has been given to fractional fillings. Here we show that the three-peak structure of Wannier
orbitals, dictated by the symmetry and topology of flat bands, facilitates the emergence of a
state we name a “fractional correlated insulator” at commensurate fractional filling of v =
n+1/3. Specifically for the filling of 1/3 electrons per moiré unit cell, we show that short-
range interactions lead to an extensive entropy due to the “breathing” degree of freedom of
an irregular honeycomb lattice that emerges through defect lines. The leading further-range
interaction lifts this degeneracy and selects a ferromagnetic nematic state that breaks AB/BA
sublattice symmetry. The proposed fractional correlated insulating state might underlie the
suppression of superconductivity at v =2 — 1/3 filling observed in ref. 1.
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have mostly focused on integer fillings, starting with the

initial discovery of correlated insulating states at an integer
number of electrons per moiré unit cell2. There has been much
progress driven by experimental discoveries of orbital
ferromagnetism3~> and other isospin polarization® as well as
nematic tendencies'”-8, However, less attention has been given to
studies of fractional filling, although phase diagrams have shown
potentially nontrivial phenomena at partial fillings, such as sup-
pression of superconductivity near the filling of v=2 — 1/31.

The focus on integer filling from a theoretical standpoint
comes from the complexity of the microscopic description of
magic angle TBG (MATBG). While experimentally, MATBG
exhibits itself as a triangular superlattice®3-10, it has been shown
that local Wannier orbitals centered at triangular lattice sites are
obstructed due to the symmetry and topology of the Bloch
wavefunctions!!-14, Instead, maximally localized Wannier orbi-
tals are centered at AB or BA sites with three lobes of the
wavefunction extending to the three neighboring AA sites!>~17
(Fig. 1). Such extended Wannier orbitals are challenging for
attempts to formulate a local model, necessarily introducing
further-range hopping and interaction terms!*16. Little attention
has been given to the fact that at commensurate partial fillings of
n+1/3 (with n integer), strong short-range interactions give rise
to geometric constraints. However, historically, interaction-driven
phenomena at partial fillings have been full of surprises and new
physics, and hetero-transition metal dichalcogenide moiré sys-
tems have shown previously unseen charge-ordered states!3-20.
Furthermore, geometrically constrained systems have long been
fertile grounds for new emergent phenomena as evidenced by the
rich physics of spin ice?! and spin liquids?2.

In this article, we focus on the implications of the Wannier
obstruction and the extended Wannier orbitals in MATBG at the
partial commensurate filling of v=1/3 electrons per unit cell.
Focusing on the strong-coupling limit invites us to map our
problem onto that of a tiling problem?324. Through this map-
ping, we argue for an extensive degeneracy of ground states at
v=1/3, filling in the limit of short-range interactions. We then
discuss how that degeneracy is lifted by the direct ferromagnetic
exchange when further-range interactions!® are taken into

Rapid developments in twisted bilayer graphene (TBG) so far
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Fig. 1 Visualization of Wannier states (WSs), AA, and AB/BA sites in
twisted bilayer graphene. a An example of a typical moiré pattern formed
by a system with a twist angle of 6°. The moiré unit cells are delimited by
the honeycomb lattice, and its dual triangular lattice is also shown. The blue
and red blobs schematically represent the shape of Wannier orbitals on the
BA and AB sublattices, respectively, with one overlapping charge lobe.

b Schematic representation of the central WS in (a) as a blue triangle,
where the vertices of the triangle correspond to the three charge lobes. The
gray triangles show those WSs which have at least one lobe overlapping
with the central blue WS; in other words, they share vertices with the
central triangle.

account. The exchange interaction selects a nematic state with
ferromagnetic spin order. Nevertheless, the extensive degeneracy
in the strong-coupling limit would still be visible as an
enhancement in entropy at temperatures exceeding the energy
scale of ferromagnetic exchange. We then confirm this prediction
based on energetics through Monte Carlo simulations.

Results and discussion

Model. We start with the much-studied lattice model of
MATBG!>16. The offset angle between the two stacked hexagonal
lattices of MATBG leads to a long-period moiré pattern that
forms the relevant lattice (Fig. 1a). Within the moiré pattern, one
can identify “AA” sites where the two layers are maximally
aligned, along with “AB” or “BA” sites where the two layers are
maximally offset. At the particular twist angle known as the
“magic” angle, the low-energy bands are flat and isolated,
allowing us to focus on the interactions of low-energy Wannier
orbitals. The Wannier orbitals of this system have a peculiar
extended “fidget spinner” shape, as was found in ref. 16. This can
be understood through symmetry considerations: while the
predicted?>26 and observed®2728 local density of states (LDOS)
of MATBG are peaked at AA sites corresponding to a triangular
lattice, any prescription of orbitals localized to these same tri-
angular lattice sites cannot reproduce the required band struc-
tures at the high symmetry points of the moiré Brillouin
zone! 113, In fact, the only option is for the orbitals to be located
at AB and BA sites, forming a honeycomb lattice, in direct ana-
logy with monolayer graphene. Thus, the charge density of a
maximally localized WS (Wannier state) must be split among the
centers of the three neighboring plaquettes (red and blue blobs in
Fig. 1a). Although additional bands beyond the flat bands are
required for the WSs to capture all the symmetries of free-
standing TBG due to the Wannier obstruction!”2°, hBN-aligned
samples or disordered samples may break C,T or other symme-
tries. For simplicity, we restrict our analysis to the WSs of the flat
bands, which always have the same three-lobed shapes regardless
of the explicit construction!!:1516, As a natural consequence of
the WS being extended, the range of on-site interactions of
fractional charges is longer than usual. However, little attention
has been given to the implications of these “distant” interactions
at fractional filling factors.

Immediately, one can recognize that the largest on-site
repulsion will arise when two Wannier orbitals have an
overlapping lobe (Fig. la). This was confirmed by a direct
construction of maximally localized WSs!®. At small filling
factors, the ground-state configuration must therefore have no
overlap between triangles. Interestingly, at the particular filling of
v=1/3 (one WS for every three AA sites), configurations exist in
which each AA site hosts a 1/3 charge lobe while the WSs respect
the no-touching rule. These configurations would all be
incompressable and thus suggest the existence of a fractional
correlated insulating state. To better illustrate these no-touching
configurations, we introduce the graphical notation of represent-
ing WSs as triangles. Their three-pronged “fidget spinner” shape
can be equivalently represented by a triangle (Fig. 1b), where the
vertices of the triangle correspond to charge lobes of the WS. In
other words, the no-touching rule of the WSs is equivalent to
enforcing that no two triangles share a vertex. For example, the
gray triangles in Fig. 1b would all violate the no-touching rule
with respect to the central triangle. Then, our triangle
representation of the WSs combined with the hard “no-touching”
constraint allows us to map MATBG at v=1/3 to a lattice tiling
problem.

Specifically, we draw a parallel to the triangular trimer tiling
model of ref. 24, in which trimers are placed on a triangular lattice
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Fig. 2 Visual representation of the "breathing entropy" argument for no-touching trimer tilings. a Starting from a uniform and sublattice-polarized
V3 x /3 state (red triangles), a line of trimers can be "flipped" (from red to blue triangles), which spans the length of the sample. Any such line of flips
must span the sample, and there are three directions a line can extend in. b Three lines of flips can either meet in an inverted "Y" joint (bottom), resulting in
a vacancy of the original +/3 x +/3 configuration (open black triangle), or in an upright "Y" joint (top), resulting in the addition of a new Wannier state (filled
black triangle). € Together, the three line directions and two types of junctions form a network of irregular hexagons. As the locations of the joints are not
fixed, the hexagons can be freely deformed (black arrows), leading to the extensive "breathing entropy" of the system.

such that no two trimers overlap. Within this model, a fully flavor
polarized state occupying 1/3 of all AB sites and maintaining C;
symmetry is a ground state. This state is represented by a
complete tiling of AB triangles, which we name the “v/3 x v/3”
state. Starting from this isotropic state, an isolated flip of an AB
(red) triangle to a neighboring BA (blue) triangle takes the system
outside of the ground-state manifold, as one vertex of the flipped
triangle will inevitably touch a neighboring triangle. However, the
no-touching constraint can be maintained if the flipping is
continued along a line perpendicular to the flipping axis (Fig. 2a).
The freedom in the flipping hints that the ground-state manifold
could contain a macroscopic number of zero-energy states. In
fact, the trimer tiling problem was found to have extensive
ground-state entropy?4, despite the prohibition of any local
moves for individual triangles.

Ground states and lifting degeneracy. While the exact solution
of the trimer tiling problem in ref. ?4 makes use of the Bethe
ansatz to explicitly calculate the extensive entropy (see Supple-
mentary Note I for details), the extensivity of the ground- state
entropy can also be understood through purely geometric con-
siderations. We briefly summarize the geometric argument of
Verberkmoes and Nienhuis?4 below. Starting from lines of flipped
triangles mentioned above, which we dub “flip-lines”, we observe
that there are three directions that the flip-lines can extend along,
each perpendicular to the three sides of an AB triangle. The flip-
lines can only terminate at one of two types of Y-junctions (see
Fig. 2b): one that introduces a vacancy (empty black triangle) or
one that adds a WS (filled black triangle). Further, each flip-line
segment must pair an empty junction and a full junction, which
effectively transports charge along the segment while staying
within the ground-state manifold without changing the net filling.
Since each segment terminates at Y-junctions, these segments
form an irregular honeycomb network in the limit of dilute flip-
lines. The irregularity of the network gives individual hexagons
the freedom to expand or shrink (Fig. 2c) at no energy cost, which
drives the extensive entropy of the system. The mechanism for
the entropy under the “no-touching” constraint is analogous to
the mechanism for the “breathing entropy” in krypton adsorbed
on graphite3%-31 where domain walls were predicted to also form
an irregular honeycomb network.

Now, we turn to further-range interactions that break the
degeneracy. Notably, our “no-touching” model restricted to local
interactions has zero Hamiltonian since the flip-lines and the

Y-junctions cost no energy, unlike in the case of krypton
adsorbed on graphite3%-31, Since the degeneracy consists of states
that all have the same uniform charge density but the differing
layout of WSs, a long-range density-density Coulomb interaction
would not break the degeneracy. Further, as we show in
Supplementary Note II, the interaction terms proposed in ref. 32
would not change the ground-state manifold. Therefore, the
leading further-range perturbation is direct exchange between
fourth-nearest neighbor WSs on opposite sublattices, labeled as
the J, interaction in ref. 16 (Fig. 3a, c; see Supplementary Note III
for a discussion of further range interactions). This interaction
couples pairs of WSs on opposite sublattices ferromagnetically.
Hence, the ], interaction breaks sublattice degeneracy as well as
spin degeneracy. Moreover, J, couples only WSs in the same
valley, meaning that the resultant state would be valley polarized.
From the perspective of the flip-line picture, the J, interaction
promotes flip-lines by introducing negative energy per unit length
of flip-lines. This is unusual from the perspective of the domain
wall network3031, suggesting that a different approach may be
needed to analyze the situation.

We can readily understand the ground states selected by the J,
interaction by inspecting the number of ], bonds each WS can have.
As shown in Fig. 3a, ¢, each WS has six neighboring sites it can
couple to though the J, interaction. Although the energy gain of the
J4 interaction would promote flipping as many triangles as possible,
starting from the bulk /3% /3 state, at most only three of the six
neighbors can be occupied while respecting the no-touching
constraint. A tiling pattern that saturates this limit has to be a
type of hexagonal lattice. Given the underlying structure and the
no-touching constraint, the hexagonal tiles need to be anisotropic
and slanted. Further details of this construction can be found in
Supplementary Note III. From this, one can build patterns with
three J, bonds per WS by tiling slanted and elongated hexagonal
bricks, with two possible directions for slanting in a given row
(Fig. 3b, d). Since the bricks are elongated, the arrangement of the
WSs breaks rotational symmetry, resulting in a nematic charge
order with ferromagnetic spin order that also breaks sublattice
symmetry and mirror symmetry. At the same time, the residual
degeneracy due to the slanting degree of freedom for each row may
further be broken with longer range interactions. While the energy
difference of the J, splitting is on the order of 0.1 meV'9, the kinetic
energy of the extended Hubbard model of Kang and Vafek!> would
favor the /3 x /3 state with an extremely small energy difference
on the order of 107° meV; see Supplementary Note IV.
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Fig. 3 Visualization of the J, interaction range, and the J;-optimal state
in two representations. The red and blue colorings correspond to Wannier
states (WSs) on the AB and BA sublattices, respectively. a The red
triangles represent a +/3x +/3 state. With respect to the central red
triangle, there are six possible J4 neighbors, shown by the blue triangles.
Only three of the six J, locations can be simultaneously occupied. b A
configuration with the maximum number of three J; neighbors per state,
and thus the lowest possible energy. The purple line segments mark pairs of
states that are coupled by the J4 interaction. The lines of J4 couplings form
an anisotropic emergent hexagonal, or "brick", lattice. The nematicity arises
from the rotational symmetry breaking in the spatial arrangement of the
WSs. ¢, d Same as panels a and b, but in the WS center site representation.

Monte Carlo. Monte Carlo simulations provided further insight.
Using finite temperature Metropolis—-Hastings Monte Carlo
simulation, we identified numerous ground states at low tem-
perature in the no-touching model, agreeing with the predicted
extensive degeneracy. Then, we studied degeneracy lifting by
adding in J, direct exchange as a perturbation, which resulted in
the selection of a unique stripe charge-ordered state (Fig. 4a).
This state has the same form as that predicted in Fig. 3b, d, but
does not show row-wise freedom in the "brick" slant orientations.
Because changing the orientation of an entire row of bricks would
require a simultaneous semi-global update of a row, freedom in
the brick orientations would only be rarely observed in the
simulations that we have performed. Still, these results support
our predictions for the no-touching model, and additionally
provided numerically evaluated estimates for the entropy (see
“Methods” for details).

Summary. To summarize, we have proposed a mechanism for
translationally symmetric fractional correlated insulating states in
MATBG. The incompressibility of the n+ 1/3 states is a robust
consequence of the Wannier obstruction in MATBG. With the
Wannier orbitals’ weight split into three lobes, the shortest
interaction promotes a uniform distribution of charge, where a
third of charge is centered at each AA site. This gives rise to
charge order at fractional filling. Mapping the model to that of a
trimer tiling problem, we showed that the short-range no-

(a)

(b)

©
©

I
o

o
[N

Entropy (kp; per moiré unit cell)
o
Y

o
=)

00 05 1.0 15 2.0 25
T/V3

3.0 35 4.0

Fig. 4 Monte Carlo simulation results. a A ground state of the "no-
touching" plus J4 model, found through Monte Carlo with periodic
boundary conditions. This state is equivalent to that predicted in Fig. 3b, d,
but does not display freedom in the bricks' slant directions. b Entropy of the
"no-touching” model, with J4 perturbation, as a function of temperature,
neglecting spin and valley degrees of freedom. The temperature is reported
in units of V3, which represents the strength of the repulsive Coulomb
interaction for third-nearest neighbor Wannier states (see Supplementary
Note Il for the definition of V3).

touching limit alone would imply an extensive entropy. The
dominant further-range interaction amounts to direct exchange,
which favors the ferromagnetic order. The direct exchange lifts
the degeneracy and selects a highly nontrivial state which breaks
C; rotational symmetry, AB/BA sublattice symmetry. Further, it
has an antiferromagnetic arrangement of AB/BA Wannier cen-
ters, while being spin ferromagnetic. In this state, the multiple
sectors of spin, orbital, and spatial rotation are intertwined. In
arriving at our conclusions about degeneracy splitting in this
work, we have focused on exchange interactions, as well as
hopping as a perturbation. More broadly, quantum fluctuations
would split the degeneracy, and order-by-disorder would also
likely pick a ground state, which could be a subject of
future study.

Discussion. Although no experiments have targeted the fractional
correlated insulating state that we proposed yet, recent experi-
ments show compelling support for our predictions. First, Cao
et al.! found a dip in the superconducting T, at v =2 — 1/3, which
is reminiscent of the dip in T, in high-T, cuprates at a com-
mensurate filling of 1/8 holes per copper oxide plane33. Fur-
thermore, at this filling, upon suppressing superconductivity with
a magnetic field, the system stayed insulating down to the lowest
temperatures studied. Moreover, in zero field, anisotropic mag-
netotransport was observed. This suggests a correlated insulating
state competing with superconductivity at this filling. While in
cuprates, this so-called 1/8 anomaly is associated with transla-
tional symmetry breaking charge-ordered (stripe) states, the
extended Wannier orbitals and topological obstruction in TBG
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Fig. 5 One example of a nematic charge-ordered state at v =2 —1/3
filling. The configuration was obtained by subtracting the v = 1/3 state (i.e.,
that shown in Fig. 3b, d) from a uniform v = 2 state proposed in refs. 1516,
The filled red and blue circles represent filled Wannier states on the AB and
BA sublattices, respectively, while empty circles represent holes relative to
the uniform v =2 state. Since the holes are placed in the same pattern as
Fig. 3b, d, the resulting v = 2 — 1/3 state is also nematic. Similarly, this state
is also ferromagnetic due to the exchange interactions between the
Wannier states.

imply a very different type of charge-ordered state whose Wan-
nier centers break lattice translational symmetry but the charge
distribution itself respects lattice translational symmetry. This is a
unique possibility afforded by the topological obstruction in
MATBG. Rozen et al.3* found entropy to slowly decrease with
decreasing temperature at higher temperatures until it drops with
ordering at lower temperatures. This closely resembles how the
extensive entropy of the short-range interacting model was visible
to the system at temperature scales higher than the interactions in
our simulation. Although a careful study of how to extend our
prediction to general states v=mn*1/3 would be an interesting
future direction, we present here a candidate state for v=2 —1/3
to match the experimentally observed phenomena. To construct
v =2 — 1/3 filling states, we now take the Wannier states in Fig. 3
to be holes in a previously proposed v = 2 state!®32; the resultant
pattern is shown in Fig. 5, and has the same nematicity, incom-
pressibility, and ferromagneticity of our proposed v =1/3 state.
This interpretation would rule out some of the v=2 states in
ref. 16 that cannot support the hole pattern of Fig. 3. In addition
to experimental tests of our predictions, the effects of quantum
fluctuations on our geometric perspectives promise to be a rich
areza2 of future theoretical studies as has been the case for spin
ice*%.

Post completion of our work, Xie et al3> observed an
incompressible state with Chern number 0 at v =4 4 11/3 electrons
per moiré unit cell, presenting a possible manifestation of our
predicted fractional correlated insulator state. Motivated by the
experiment, a Hartree—Fock calculation with a tripled superlattice in
ref. 3% considered a charge-ordered state corresponding to the
/3% /3 tiling. The fractional correlated insulating states that we
are proposing differ from the proposed Hartree-Fock states in that
our states preserve translational symmetry in the charge sector, as
well as hosting quasiparticles with fractional charge3”.

Methods

To simulate the extensively degenerate ground-state manifold, we performed a
finite temperature Metropolis-Hastings Monte Carlo (MC) simulation of the
no-touching model. We modeled the on-site interactions using the approximation
of ref. 16, where WSs are approximated by three 1/3 fractional charges centered at
their lobes. We then study the lifting of degeneracy by adding a small J, pertur-
bation. To avoid being trapped in local minima, a single MC step consisted of
independent add and remove operations, ensuring global updates. In the original
no-touching model, we identified abundant ground-state charge orders at low
temperature. Meanwhile, after adding the J; perturbation, the one-dimensional
type charge order appeared to have a unique ground state as shown in Fig. 4a.

To evaluate the ground-state degeneracy, the zero-temperature thermal entropy of
twisted bilayer graphene at # = + 1/3 is calculated within the no-touching model. Direct
calculation requires counting in the ground-state manifold with exponentially large
degeneracy, which is only possible for small-size systems. In extended systems, we first
derive the infinite temperature entropy exactly and then approach the zero-temperature
entropy by temperature-dependent Monte Carlo simulations. In a spin-valley fully
polarized system, the exact infinite temperature entropy per moiré unit cell in the
thermodynamic limit (N ~ =) is given by S, = kzInZ/N?> ~ (2In2 — nlnn — (2 —
n)In(2 — n))kz where Z is the dimension of the configuration space, and 7 is the
number of charges per moiré unit cell. The temperature-dependent entropy is given by

S(T) = Sy — [7 dT'Cy(T")/T', and C(T) = % = 2= ((E?) — (E)?) is the spe-
B
cific heat that can be directly evaluated from the energy distribution in Monte Carlo

simulations (Fig. 4b).
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