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Making progress in studying the interplay between disorder and fluctuations is challenged by the
complexity of extracting robust insights from experiments affected by noise and finite resolution.
This has hindered observations of the Bragg glass phase, which is predicted to occur in vortex lattices
and charge density wave systems in the presence of disorder. Despite its sharp theoretical definition
in terms of diverging correlation lengths, establishing the existence of the Bragg glass phase in a
charge density wave system has been challenging. Here, we present the first bulk probe evidence of
a Bragg glass phase in the systematically disordered CDW material PdxErTe3 using comprehensive
x-ray data and a novel machine learning data analysis tool, X-ray Temperature Clustering (X-TEC).
Using data from 20,000 Brillouin zones readily analyzed using X-TEC, we establish a diverging cor-
relation length in samples with moderate intercalation over a wide temperature range. To enable
such comprehensive analysis, we introduced a new high-through put measure of inverse correlation
length: “peak-spread”. The detection of Bragg glass order and the resulting phase diagram advance
our understanding of the complex interplay between disorder and fluctuations significantly. More-
over, the use of X-TEC to target fluctuations through a high-throughput measure of “peak spread”
can revolutionize how the fluctuations are studied in scattering experiments.

ar
X

iv
:2

20
7.

14
79

5v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

9 
Ju

l 2
02

2



2

INTRODUCTION

The interplay between disorder and fluctuations can result in complex new phases, such as spin glasses, recently

celebrated through a Nobel prize [1]. While theoretical frameworks for understanding such complex phases can have

far reaching implications, it can be challenging to untangle the subtleties of this interplay from experimental data

when finite experimental resolution and noise obscure comparisons with idealized theoretical predictions. The Bragg

glass is an example of such an elusive novel phase [2]. It is an algebraically ordered glass, which can appear as ordered

as a perfect crystal, but whose Bragg peak intensities diverge as power-laws [3–7]. However, with the experimental

resolution cutting off the divergence in actual data, it can be challenging to detect a Bragg glass. While the Bragg

glass has been proposed for charge-density-wave systems (CDW) and vortex lattices, unambiguous direct evidence has

so far been limited to vortex lattices [8]. Since the lattice periodicity in a vortex lattice is controlled by magnetic field,

Klein et al. [8] could rely on the magnetic field-independent width of the rocking curve as evidence of the absence of

an intrinsic length scale and the underlying algebraic order. However, evidence of Bragg glass phenomena in CDW

systems with emergent, system-specific periodicity is suggestive at best and limited to scanning tunneling microscopy

(STM) studies of NbSe2 [9] and PdxErTe3 [10]. Hence, whether an algebraically ordered CDW phase can exist as a

bulk phase in a CDW system or whether CDW’s always respond to disorder as, for example, a vestigial nematic with

a short correlation length [11] remains an open problem.

In this work, we present the first evidence using a bulk probe of a Bragg glass phase in a systematically disordered

CDW material, PdxErTe3, using comprehensive single-crystal x-ray scattering and a novel ML-based method of data

analysis called X-ray Temperature Clustering (X-TEC ) [introduced by some of us in Ref 12]. Specifically, we provide

evidence of a vanishing intrinsic length scale by tracking the temperature and momentum dependence of all the

CDW peaks in a reciprocal space volume spanning 20000 Brillouin Zones (BZ) with the help of X-TEC. To the

best of our knowledge, this is the first time CDW fluctuations have been analyzed from more than a handful of

peaks. The statistics afforded by such an unprecedented comprehensive analysis of the CDW peak width enables an

accurate assessment of CDW correlation lengths by eliminating contributions to the observed peak width from crystal

imperfections, and statistically minimizing errors near the resolution limit. The resulting phase diagram establishes

the Bragg glass to be the dominant phase, aligning with the onset of the transport anisotropy previously observed [13].

The notion that a quasi-long range ordering of vortex lattices and charge density waves is possible in the form of
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Bragg glass in the presence of disorder [2–4] was a surprising theoretical prediction contradicting the long-standing

wisdom that order parameters that couple linearly with a disorder potential are destined to be short-ranged at

best [14]. The key difference lies in whether the phase fluctuation is allowed to grow indefinitely or the phase is

defined compactly within [0, 2π). When considering a phase linearly coupling to the disorder potential, Imry and Ma

showed that phase fluctuations can grow arbitrarily to overcome the elastic restoring energy, resulting in short-range

correlations in dimensions below 4D [14]. However, Nattermann [3] noted that the phase of periodic states such as

charge density waves and vortex lattices should be defined compactly within [0, 2π); this compactness keeps the impact

of the disorder potential in check. Specifically, the disorder-averaged potential energy depends on the exponential of

the phase fluctuations, allowing for quasi-long range order in the phase correlations in 3D [2–4] (see Appendix A).

Evidence for the divergence of the correlation length with such quasi-long range order would be the vanishing width

of structure factor peaks associated with the periodicity[6, 15]. Since the vortex or CDW phase is well-defined within

[0, 2π) only in the absence of dislocations, observation of such an absence[9, 10] establishes a necessary, but not a

sufficient, condition for a Bragg glass.

There are many challenges in making direct observations of Bragg glass phenomena in CDW systems. First, for a

systematic understanding of the role of disorder, a material family with adjustable disorder is needed. Second, for a

statistically significant separation of real-life issues such as crystal imperfections and finite resolution all contributing

to the peak width from the sought-after fluctuation effects, a large volume of comprehensive data is a must. Finally,

for a reliable analysis of such large volumes of comprehensive data, a new approach to the data analysis is critical. We

turn to PdxErTe3 to address the first, material system challenge [10, 13, 16]. Pristine ErTe3 is a member of the rare

earth tritelluride family with nearly square Te nets and a glide plane distinguishing the two in-plane directions a and

c [Fig. 1(a)]. It hosts a unidirectional CDW ordering (CDW-1, along c axis) below a critical temperature Tc1 and an

orthogonal unidirectional CDW (CDW-2, along a axis) below Tc2, where Tc2 < Tc1 due to a weak orthorhombicity [17].

Pd intercalation provides localized disorder potentials at random sites, making PdxErTe3 a model system to study

emergent phases from suppression of long-range CDW order [10, 13]. Transport measurements in the pristine sample

have revealed the onset of anisotropy in resistivity between the a and c axis at the CDW transition temperature [13, 18].

Increasing intercalation lowers the onset temperature for the transport anisotropy [13]. While this reveals the broken

C4 symmetry, two possible candidates for the disordered CDW phase remain open: a short range ordered CDW

forming a vestigial nematic phase pinned by weak symmetry-breaking field and a Bragg glass phase characterized by
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quasi-long range CDW order with divergent power-law correlations.

We overcome the second challenge of the data volume by taking x-ray temperature series data for single crystals

PdxErTe3 at different intercalation strengths (x = 0.0, 0.5%, 2.0%, 2.6%, 2.9%). We utilize highly efficient methods

for collecting total x-ray scattering over large volumes of reciprocal space recently developed on Sector 6-ID-D at the

Advanced Photon Source [19]. In each measurement, a crystal is rotated continuously through 360◦at a rate of 1◦/s

while images are collected on a fast area detector (Pilatus 2M CdTe) every 0.1 s, with a monochromatic incident

x-ray energy of 87 keV. Three rotations are required to fill in gaps between the detector chips. Uncompressed, the

raw data volume is over 100 GB. While the data volume is reduced by an order-of-magnitude after transforming the

images into reciprocal space meshes, these meshes include over 10,000 Brillouin Zones (BZ) and approximately 5×108

bins containing data. Such volumes are collected at a series of temperatures from 30 K to 300 K, controlled by a

helium/nitrogen cryostream.

Finally, we overcome the challenge of data analysis through a scalable extraction of theoretically relevant features

using a machine learning algorithm X-TEC [12]. In the x-ray scattering data, the CDW lattice distortions are manifest

as satellite peaks around each of the Bragg peaks [Fig. 1(b)]. We focus on the temperature evolution of three features

associated with the CDW peaks [illustrated in Fig.1 (c)]: the peak height, the peak width, and the asymmetry in the

intensity distribution between pairs of peaks. In the long-range ordered CDW of the pristine sample, the temperature

dependence of peak heights are sufficient to reveal the order parameter and the transition temperature (Tc). However,

disorder can often broaden the transition. Moreover, in Bragg glass, the temperature dependence of the peak height

does not reveal a clear onset behavior. This is because even after the breakdown of Bragg glass order, a non-vanishing

superlattice peak intensity continues to persist to higher temperatures due to short ranged CDWs pinned by disorder

[see the first row of the table in Fig. 1(d)]. On the other hand, the peak width of the CDW peaks [Γ in Fig. 1(c)]

should vanish upon transition into both the long-range ordered and Bragg glass phases [see the second row of the

table in Fig. 1(d)], whereas a short-range ordered phase, such as a vestigial nematic, will show a finite width down to

the lowest temperatures (see Appendix-C). Invariably, finite experimental resolution and finite amount of crystalline

defects present in samples will mask this difference. However, with enough statistics over a range of temperatures, the

temperature dependence of the width can be extrapolated to the vanishing point and allow for the determination of

the Bragg glass transition temperature TBG [see the second row in Fig. 1(d)]. Finally, with the peak width vanishing

for both the long-range ordered phase and the Bragg glass phase, we need a feature that can distinguish one from
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the other. We turn to the third and final feature of the asymmetry in the intensity distribution between a pair of

CDW satellite peaks [asymmetry in Fig. 1(c)]. Since the intensity difference between two satellite peaks at points

~G± ~qc across the Bragg peak at ~G, I(~G+ ~qc)− I(~G− ~qc) is linear on the displacements ~u~qc and ~u−~qc , this difference

vanishes without disorder pinning (see Appendix-D) [20]. Hence such asymmetry will distinguish the Bragg glass

from long-range order [6, 21] [see the third row in Fig. 1(d)].

Manually tracking the three features of the disordered CDW from large data sets [Fig. 1(e)] presents a daunting

challenge, hence the need for an automated machine learning approach like X-TEC. At the core of the X-TEC

algorithm is a Gaussian Mixture Model (GMM) clustering to identify distinct temperature trajectories from the x-ray

data. This is achieved by representing the intensity-temperature trajectory at each ~q in reciprocal space: {I~q(Ti)}

spanning d number of temperatures {T1, . . . , Td} [Fig. 1(e) with d = 19], as a point in the d-dimensional space [see

SM-Fig.2 for a 2D projection of this space]. From this distribution in hyperspace, GMM identifies a number of distinct

clusters and assigns points to each one. From these cluster assignments, we can identify distinct intensity-temperature

trajectories present in the data [Fig. 1(g)], thereby revealing the physically interesting ones, such as those representing

the temperature dependence of the order parameters.

We first benchmark the X-TEC outcomes against known results for the pristine ErTe3 data [Fig. 2(a)]. The

collection of raw data fed into X-TEC yields two well-defined CDW transitions in a matter of minutes [see Appendix-

F for details on X-TEC processing]. From the mean trajectories of the intensities in these two clusters, we can

identify two transition temperatures Tc1 ≈ 260K and Tc2 ≈ 135K. The transition temperatures identified by X-TEC

are consistent with those determined from transport anisotropies [13]. Turning to where the clusters are located in

reciprocal space, we find that the two intensity clusters correspond to the CDW-1 and CDW-2 peaks, whose K-

dependence are consistent with known selection rules [Fig. 2(b-c)]. Both the CDW-1 and CDW-2 peaks are sharp,

as expected for 3D CDW order, and therefore satisfy the dimensionality condition necessary for a stable Bragg glass

phase [22, 23]. In the rest of the paper, we focus on the CDW-1 peaks with higher transition temperature matching

the expectations of the BCS order parameter in the pristine sample [Fig. 2(d)].

Repeating the X-TEC analysis on all intercalated samples, one readily extracts our first feature of interest: the

temperature trajectory of the CDW peak intensity (peak height) shown in Fig. 2(d,e). We show the average trajectory

of all CDW-1 peaks at various intercalation levels. Increasing intercalation suppress the overall intensity of modulations

but more importantly it spreads out the intensity distribution as a function of temperature, leaving a long tail up
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to higher temperatures. The long tail due to pinned CDW fluctuations at the intercalants [24] hinders a clean

determination of the putative Bragg glass transition [2–4] from the temperature dependence of the peak intensities.

On the other hand, an STM study on PdxErTe3 [10] has shown the absence of free dislocations, which is necessary

for a Bragg glass, for moderate levels of intercalation (x . 2%) at a base temperature . 1.7 K.

To target the unambiguous signature of a Bragg glass, we now turn to our second feature of interest, namely

the peak width. The objective is to separate three sources of CDW peak broadening with confidence: (1) the

instrumental resolution, (2) finite CDW correlation lengths, (3) crystal imperfections. Our approach is to use the

~q ≡ (H,K,L) dependence of the peak broadening since only crystal imperfections would result in a (quadratic)

momentum dependence across BZ’s (Appendix-E). This strategy requires measuring peak widths over a statistically

significant number of BZ’s. While our experimental setup can give us ready access to XRD data across 20,000 BZ’s,

the traditional approach for extracting peak widths cannot use such comprehensive information. Specifically, the

traditional peak width extraction approach of fitting a line cut of high-resolution data is not scalable (see SM section

G). This forces researchers to an ad-hoc choice of a handful of peaks, ruling out statistically meaningful ~q ≡ (H,K,L)

analysis. Instead, we have adopted a high-throughput approach, by combining the automatic X-TEC extraction of

all the CDW peaks and using a new measure of peak width: the peak spread

Γ~q(T ) ≡
ITot~q (T )

IMax
~q (T )

, (1)

in units of the number of pixels. Here, ITot~q (T ) is the integrated intensity and IMax
~q (T ) is the maximum intensity (peak

height) of the CDW. While being consistent with the conventional peak width estimates [Fig. 2(f), see also Appendix-

H], the spread as defined possesses several merits compared to the traditional extraction of the inverse correlation

length. First, it is model-independent. Second, it does not require high-resolution data. Third, it naturally integrates

with X-TEC, which offers the peak boundaries for all the CDW peaks[Fig. 2(e)]. Finally, when combined with X-TEC,

Γ~q(T ) can reveal the momentum and temperature evolution of peak widths over a statistically significant number of

CDW peaks.

Armed with the new high-throughput measure “peak-spread” Γ~q(T ), we single out the CDW fluctuation contribu-

tions by extracting the momentum-independent part of the peak spread by analyzing Γ~q(T ) across 20,000 BZ’s and the

entire temperature range [Fig. 3(a-c)]. Specifically, we fit the momentum dependence of Γ~q(T ) at each temperature

T to a quadratic function expected in the small |~q| limit [Fig. 3(b)] [25–29]:

Γ~q≡(H,K,L)(T ) = Γ0(T ) + γH(T )H2 + γK(T )K2 + γL(T )L2, (2)
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where γH(T ), γK(T ), and γL(T ) quantify the momentum dependence at each temperature T along a∗, b∗ and c∗ axis

respectively. In this way, the extracted momentum-independent width Γ0(T ) would reflect the peak width solely due

to CDW fluctuations. Indeed Γ0(T ) extracted from ∼ 2000 peaks of the pristine sample drops and plateaus at the

critical temperature Tc1[Fig. 3(c)], as expected for the long-range order signal cut-off by finite experimental resolution

(see Fig. 1(d)).

This analysis reveals the emergence of a threshold temperature in intercalated samples shown in Fig. 3(d-f), below

which Γ0(T ) becomes constant, signifying that the widths of the CDW peaks at these low temperatures are resolution

limited. To go beyond the resolution limit and find the point of vanishing peak width, we extrapolate Γ0(T ) using an

empirical formula:

Γ0(T ) = Γ + α (T − β)Θ[T − β]. (3)

Here, Θ[t > 0] = 1 is the Heaviside step function, and Γ (the resolution limit), α, and β are the fitting parameters.

We estimate the Bragg glass transition temperature to be the positive temperature at which the extrapolation reaches

vanishing width, i.e., TBG1
= β − Γ̄/α. We find positive TBG1

defining the Bragg glass phase in all intercalated

samples except at the highest concentration [x = 2.9% in Fig. 3(f)]. Combining the CDW-1 transition temperature

Tc1 of the pristine sample [from Fig. 2(d)] and the newly extracted Bragg glass transition temperature, TBG1 of the

intercalated samples, we obtain a comprehensive phase diagram shown in Fig. 3(g). Remarkably, the temperatures

identified from the onset of transport anisostropy [13] align closely with the TBG1
, implying that the phase space

exhibiting in-plane resistance anisotropy is predominantly covered by the Bragg glass.

Since both long-range order and Bragg glass order have the same signature of a vanishing peak width, we introduce

our final feature of interest to distinguish Bragg glass from long range order: the asymmetry between the intensity

distribution of a pair of CDW satellite peaks. As it has been long known, disorder pinning of the lattice displacement

component u~q can cause asymmetry between intensities I(~G+~q) and I(~G−~q) [6, 20, 21] (see Appendix-D). We probe

the asymmetry signature from the surrounding diffuse scattering of the CDW peaks, since the resolution limits the

accuracy of asymmetry assessments from the CDW peaks. As shown in Fig. 4(a-b), the contrast between the raw x-ray

data from the pristine sample and the intercalated sample is stark. Specifically, while the pristine sample’s intensity

distribution shows minimal asymmetry of the satellite diffuse scattering across the Bragg peaks, the intercalated

sample clearly shows enhanced asymmetry in the form of half diamonds. The raw intensity cuts shown in Fig. 4(c-f),

at temperatures spanning the CDW-1 long range ordered and Bragg glass phase for the pristine and intercalated
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sample respectively, clearly shows that only the intercalated sample in Fig. 4(e-f) exhibit marked asymmetry. The

presence of asymmetry specific to the intercalated sample distinguishes it from the pristine sample, and indicates

the pinning of CDW modulations by the intercalant-induced disorder. A comprehensive picture of the prevalent

asymmetry in the Bragg glass phase emerges upon X-TEC clustering shown in Fig. 4(g). When the entire data set of

the intercalated sample is split into two clusters (after removing the Bragg peaks and the CDW peaks), the clustering

results reveal that the diffuse region around satellite CDW-1 peaks are systematically asymmetric.

In summary, we report the first x-ray scattering evidence of the Bragg glass phase in a family of disordered charge

density wave systems, Pd-intercalated ErTe3. In order to disentangle intrinsic phase fluctuation effects of the CDW

from crystalline imperfections despite finite experimental resolution, we obtained comprehensive XRD data spanning

∼ 20, 000 Brillouin zones over 30-300K range of temperatures. We then analyzed the entire ∼150GB of XRD data

using X-TEC, an unsupervised machine learning tool for revealing collective phenomena from voluminous temperature

dependent XRD data[12]. We employed a multi-faceted approach of tracking three features, namely the peak height,

the peak width, and the peak asymmetry, throughout the entire dataset. Consolidating the results of this analysis, we

were able to disentangle the effects of lattice imperfections and finite momentum resolution from the intrinsic tendency

for topological quasi-long range order into a Bragg glass phase. Thus we discovered that the Bragg glass phase spans

most of the phase space that exhibits transport anisotropy, extending up to remarkably high temperatures.

The significance of our findings are two-fold. Firstly, we made significant advances in understanding the elusive

Bragg glass phase by establishing direct evidence of the Bragg glass for the first time in a charge density wave systems

and mapping out the transition temperature TBG. It is remarkable that the Bragg glass phase suggested from the

STM measurements only at temperatures below 1.7K extends all the way up to 100K and beyond until the Bragg

glass phase collapses at around 2.9% intercalation. Moreover, the evidence for the Bragg glass we established leaves

only a very narrow range of phase space that can possibly support the competing short-range ordered phase. Secondly,

the new discovery enabled by the use of X-TEC and the new high-throughput measure of peak-width demonstrates

the potential of the new ML-enabled data analysis in addressing fundamental issues when intrinsic fluctuations and

the effect of disorder lead to a complex and rich plethora of phenomena. The high-throughput measure of peak width

enabled us to disentangle the effects of crystalline defects from the effects of intrinsic CDW phase fluctuations by

giving us access to zone-to-zone correlation in fluctuations over 20,000 BZ’s. This separation in turn allowed us to

connect the voluminous XRD data with the STM observations and the theory of Bragg glasses. The modality of
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comprehensive high-throughput extraction of theoretically inspired features promises to enable new discoveries in the

era of big data, rich with information, and connect varied facets of complex systems accessible to different probes.
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Fig 1: (a): The crystal structure of pure ErTe3. The Te planes have approximately square geometry. The crystal

belongs to the Cmcm space group, b denotes the out-of-plane axis, and a, c are the in-plane axes. (b): A schematic [13]

showing the Bragg peaks (circles) and CDW peaks (triangles) in the in-plane (a∗-c∗) reciprocal space. The CDW-1 (up

triangle) and CDW-2 (down triangle) satellite peaks are aligned along the c∗ and a∗ axes, respectively. (c): Schematic

for the in-plane (a∗-c∗) intensity distribution of the pair of CDW satellite peaks [at (H,L± qc)] around a Bragg peak

[at (H,L)], with the three features of interest: the height of the peak (vertical dotted arrow), the width of the peak Γ

(solid arrow), and the asymmetry between the satellite peaks (dashed arrow). (d): Table summarising the diagnostics

for classifying the three phases. The first row describes the CDW intensity (peak height) temperature trajectory. Only

the pristine sample with long range order exhibits a sharp onset, marking the transition temperature Tc. On the other

hand, even after the breakdown of Bragg glass order upon increasing temperature, short ranged fluctuations persist

(due to disorder pinning) and contribute to the peak height. This obscures the identification of the Bragg glass

transition. The second row illustrates the temperature dependence of the CDW peak width Γ. The width is zero in

the long-range ordered phase below Tc of the pristine sample, as well as in the Bragg glass phase below the transition

temperature TBG1 of the disordered sample (Appendix-B). The observed width levels off at the resolution limit (dotted

line) at temperatures above Tc and TBG1
. The third row illustrates the asymmetry in the intensity distribution across

a Bragg peak. The asymmetry is absent in the pristine sample, and its presence in the disordered sample indicates

disorder pinning (Appendix-C). (e,f): An illustration of X-TEC to cluster distinct intensity-temperature trajectories,

I(T ), given the intensity-temperature trajectory {I~q(T ) of the pristine ErTe3 sample at various momenta ~q in the

reciprocal space. The raw trajectories at each ~q are rescaled as log[I~q(T )] = log[I~q(T )]−〈log[I~q(T )]〉T [panel (e)]. The

X-TEC clusters the trajectories (with color assignments to identify each cluster). The distinct trajectories I(T ) and

their standard deviation are shown in panel (f).
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Fig 2: (a): Benchmarking the X-TEC analysis of the scattering intensities of pristine ErTe3. X-TEC reveals the

intensity clusters corresponding to the two CDW order parameter trajectories, color-coded as red and blue. The

lines describe the mean and the shaded regions describe one standard deviation of the intensities within each cluster.

The estimated transition temperatures Tc1 ≈ 261K for CDW-1 and Tc2 ≈ 135K for CDW-2 are consistent with the

temperatures from transport measurements in Ref. 13. (b-c): A small region of reciprocal space where momenta

whose intensity trajectory belong to the red and blue cluster assignments in (a) are labeled as red and blue pixels

respectively. The red (blue) pixels conform to the CDW-1 (CDW-2) peaks along c∗ (a∗) axis. The light grey pixels

correspond to Bragg peaks and their diffuse scattering. The 3D structure of the peaks are apparent from the k = 1

(odd) plane (panel (b)) and k = 2 (even) plane (panel (c)) that show two different patterns reflecting the Cmcm

selection rules governing the Bragg peaks. (d): The CDW-1 peak averaged intensity (peak height) for PdxErTe3

at intercalation strength x = 0, 2.0%, 2.6% and 2.9%. The Ĩ is obtained from the average of all the intensities

in the CDW-1 cluster (∼ 2000 peaks), from which we subtract the background intensity contribution (Ĩ below the

background floor are set as zero). The Ĩ for all samples are normalized with the maximum value from x = 0, for

comparison.
√
Ĩ(T ) for x = 0 fits well to a power law ∝ (Tc1 − T )β giving Tc1 ∼ 261K (star symbol) and β = 0.502

matching the BCS order parameter exponent. The Bragg glass transition temperature TBG1
for x = 2% and x = 2.6%

is estimated from the peak width analysis in Fig. 3(e-f). All solid lines are guides to the eyes. (e): A CDW-1 peak

intensity distribution in the H-L plane (K = 2) for the x = 0% sample at T = 30K. The red boundary for the CDW-1

peak is estimated by X-TEC (pixels inside the boundary belong to CDW-1 cluster). Within this boundary, the total

intensity ITot~q (T ) and maximum intensity IMax
~q (T ) of the peak gives the high throughput measure of peak spread

Γ~q(T ) [Eq. (1)]. (f): The peak spread (Γ) of the CDW peak in (e), along with the FWHM from line cuts along H

(FWHM-H) and L (FWHM-L), at various T for x = 0%.
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Fig 3: (a): Peak spread Γ~q(T ) of all CDW-1 peaks in the x = 0 data. (b): The quadratic momentum (H2)

dependence of Γ~q(T ). 〈ΓH〉 (symbols) is obtained by averaging Γ~q over values of K and L that share the same |H|.

The error bars indicate the standard deviation. (c): From the erratic and broad distribution of Γ~q(T ) in panel (a), the

momentum-independent spread Γ0 extracted from the 3D quadratic fit [Eq. (2)] shows a T independent (resolution

limited) spread below Tc1 [Tc1 = 261 K from Fig. 2 (d)]. Error bars on the symbols are 95% confidence bounds on

Γ0. (d-f): The ~q independent broadening of CDW-1 peak spread, Γ0(T ), extracted from ∼ 2000 peaks by fitting

their Γ~q to a quadratic function of ~q [Eq. (2)] for x = 2%, 2.6%, and 2.9% in panels (d), (e) and (f) respectively.

Error bars indicate 95% confidence bounds. Dashed lines are a phenomenological fitting function [Eq. (3)] to extract

CDW-1 Bragg glass temperature TBG1
. The dotted lines mark the resolution limit Γ from the fit. We find a Bragg

glass regime for x = 2% and 2.6% sample by extracting TBG1
(vertical solid lines) from extrapolating the broadening

regime to zero spread. (g): Our estimates for the transition temperatures Tc1 of x = 0% (star symbol) and TBG1 of

x > 0 (up triangle symbols) are overlaid on the phase diagram from the in-plane resistance anisotropy measurements

(square symbols) from Ref. 13. Lines are guides to the eyes. The CDW-1 long range ordered phase of x = 0% is

indicated by the dashed orange line, and the CDW-1 Bragg glass phase lies below TBG1 for x > 0.
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Fig 4: Intensity asymmetry of the CDW satellite peaks. (a-b): The x-ray intensity at T = 30K, in the H-L plane

with K (out-of-plane axis) averaged over all integers (−20 ≤ K ≤ 20), for the pristine sample [x = 0% in panel(a)]

and intercalated sample [x = 2% in panel (b)]. Only the intercalated sample shows a diffuse scattering that is

asymmetrically distributed between the two satellite peaks, in the form of half diamonds. The white horizontal lines

across a pair of CDW-1 satellite peaks mark the region along which a line cut is taken and is shown in panels (c-f).

Line cuts are along 3.5 ≤ L ≤ 4.5 (r.l.u) with intensity averaged over H = 1± 0.02 (r.l.u) and over all integer values

of K ∈ [−20, 20]. (c-d): Line cut of the intensity I(L) for the pristine sample at 30K (panel c) and 230K < Tc1

(panel d). (e-f): Line cut of the intensity I(L) for the x = 2% intercalated sample at 30K (panel e) and at 110K

< TBG1 (panel f). The asymmetry is clearly visible in the line cuts of the intercalated sample (and absent in the

pristine sample) at both the temperatures. (g): Two cluster X-TEC results color coded as red and blue, from the

temperature trajectories of the diffuse scattering intensities of the x = 2% intercalated sample. Only the temperature

trajectories below TBG1 are clustered. The pixels are colored red (blue) if their intensity trajectory belongs to the red

(blue) cluster. The asymmetric distribution of red and blue clusters surrounding the CDW satellite peaks (see black

arrows for reference) is systematically present in the intercalated sample in the Bragg glass phase, clearly revealing

the signature of disorder pinning. The intensities of the CDW peaks and H+L = odd Bragg peaks (white pixels,

identified from a prior X-TEC analysis) are excluded from this two-cluster X-TEC, along with the H+L = even

Bragg peaks removed by a square mask (square white regions).
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Appendix A : Scaling argument for Bragg glass

The energy scaling argument by Imry and Ma considering an XY model [14], and by Fukuyama and Lee considering

a disordered CDW [30], indicates that only short ranged correlations are allowed in continuous symmetry broken states

below 4 dimensions, based on an assumption of a disorder potential linearly coupled to the phase. However for the

CDW, the true potential is non-linear and a periodic function of phase. Nattermann [3] took this periodicity into

account and showed that the modified scaling argument supports the quasi-long range order of the Bragg glass.

Here we recall the scaling arguments, starting with Imry and Ma’s analysis and its shortcoming, and then follow

Nattermann’s analysis [Ref. 3] supporting the Bragg glass order in 3D. We start with a charge density wave,

ρ(~r, φ) = ρ0 cos[~qc · ~r + φ(~r)] (4)

with an incommensurate wave vector ~qc, a constant amplitude ρ0 and a phase φ(~r) that can spatially vary due to

thermal fluctuations and disorder interactions. The interaction with quenched disorder in D spatial dimensions can

be described with an elastic model whose Hamiltonian is given by [7],

H =
C

2

∫
dDr |~∇φ(~r)|2 + V0

∫
dDr Σ(~r)ρ(~r, φ) (5)

where the first term is the elastic part with C as the elastic stiffness, and the second term is the disorder potential

due to quenched impurities exerting a potential V0 on the charge density, and distributed with a probability density

Σ(~r). We assume there are no topological defects in the system so that φ(~r) is single valued and the elastic model is

well defined, which is a necessary condition for a Bragg glass [2, 5, 31]. A spatially modulated phase φ(~r) increases

the elastic energy, but can lower the potential energy by conforming ρ(~r) to the impurity distribution. The disordered

phases arise from this competition between the elastic energy cost and the potential energy gain. These phases are

distinguished by the fluctuations in φ(~r) relative to an arbitrary reference point φ(~r = 0), given by

W 2(|~r|) = 〈(φ(~r)− φ(0))
2〉 (6)

where 〈. . . 〉 denotes a thermal average and (. . . ) denotes a disorder ensemble average. To simplify, we fix φ(0) = 0,

and assume that fluctuations are spherically symmetric with respect to ~r = 0.

We first identify the scaling of elastic energy cost from Eq. (5). For a phase that varies by an amount W (R) over

a distance R, the elastic energy (EE) in the volume RD scales as

EE ∝ 1

2
C

(
W (R)

R

)2

RD (7)
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This shows that for D > 2, the elastic energy cost increases with phase fluctuations over larger distances. In the

absence of disorder, this energy cost protects the long range order.

Now we discuss the scaling of the potential energy in a volume RD. We imagine each site is independently occupied

by an impurity with probability nI , the impurity concentration. The volume includes nIR
D impurities, and each

random impurity site ~ri contributes a potential energy V (~ri) given by,

V (~ri) = V0ρ0 cos[~qc.~ri + φ(~ri)] (8)

Imry-Ma scaling: Imry and Ma’s argument is valid when φ(~ri) is small and a linear approximation applies to

Eq. (8), given by

V (~ri) = V0ρ0 (cos(~qc · ~ri)− sin(~qc · ~ri)φ(~ri)) +O(φ2(~ri)) (9)

where we can discard the first term that sets a constant offset, and the second term gives the potential energy gain

from φ(~ri). To estimate the magnitude of this energy gain in a volume RD, we note that a typical impurity site has a

position |~ri| ∼ R and the phase |φ(~ri)| ≈
(
〈φ2(~ri)〉

)1/2
∼W (R). Hence, the magnitude of potential energy gain from

each impurity, V0ρ0 |sin(~qc · ~ri)φ(~ri)|, has a typical value ∼ V0ρ0W (R), and the magnitude of total potential energy

(PE) scales as

PE ∼
(√

nIRD
)
V0ρ0W (R) (10)

where the factor
√
nIRD follows from central limit theorem giving the root mean squared value from nIR

D indepen-

dent random impurities.

Equating the elastic energy cost [Eq. (7)] to potential energy gain [Eq. (10)] gives the optimal W (R) given by

CRD−2W 2(R) ∼
(√

nIRD
)
V0ρ0W (R) (11)

⇒W (R) ∼

(
V0ρ0n

1/2
I

C

)
R(4−D)/2 (12)

For D < 4, W (R) grows algebraically with R, tempting one to conclude that the system is short-range-ordered for

arbitrarily small disorder strength. A length scale for the short range order was estimated as the length R0 at which

W (R0) ∼ π, the maximum value for the fluctuation. From Eq. (12), an estimate for this length scale R0 (also known

as the Fukuyama-Lee length [30]) is given by

R0 =

(
C

V0ρ0n
1/2
I

)2/(4−D)

(13)
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R0 is also a length scale that highlights the breakdown of the above scaling argument. At these length scales, φ(~r) is

large and inconsistent with the linear approximation in Eq. (9). The full periodic nature of the potential needs to be

considered to understand the fluctuations beyond R0.

Nattermann’s scaling: Retaining the periodic nature of the potential energy in Eq. (8), we can now get the

new scaling estimate for the magnitude of potential energy in a volume RD as follows. Each impurity contributes to

the potential energy by a magnitude V0ρ0 |cos(~qc.~ri + φ(~ri))| ∼ V0ρ0e
−〈φ2(~ri)〉/2. In a volume RD, since the typical

position |~ri| ∼ R, V0ρ0e
−〈φ2(~ri)〉/2 ∼ V0ρ0e−W

2(R)/2, and the total potential energy (PE) thus scales as

PE ∼
(√

nIRD
)
V0ρ0e

−W 2(R)/2 (14)

where the factor
√
nIRD follows from fluctuations of nIR

D independent random impurities.

Equating the elastic energy cost [Eq. (7)] to potential energy gain [Eq. (14)] gives the optimal W (R) given by

CRD−2W 2(R) ∼
(√

nIRD
)
V0ρ0e

−W 2(R)/2 (15)

⇒W 2(R) ∼ (4−D) log(R/R0) +O (log(log(R/R0))) (16)

where R0 is the same length scale from Eq. (13). Thus for D < 4, W 2(R > R0) grows logarithmically to leading

order. This is the Bragg glass order.

Appendix B: Sample preparation and X-ray details

Samples were grown using a Te self-flux method as described in Ref. 32. Small amounts of Pd were included

in the melt to produce the palladium intercalated crystals. Crystals produced had an area of 1-2mm across and

varied in thickness with intercalation level. Since the CDW transition temperature is well characterized for different

intercalation levels, resistivity measurements of the sample batches used were taken to determine the intercalation

levels of the samples studied [13]. Samples were shipped to Argonne in sealed vials filled with inert gas and removed

and mounted on the tips of polyimide capillaries just before measurement to avoid degradation from water and oxygen

exposure. During measurements, samples were cooled using an Oxford N-Helix Cryostream, which surrounded samples

with either N2 or He gas. Measurements were taken with incident x-ray energy of 87 keV in transmission geometry,

with samples continuously rotated at 1◦ s−1 and a Pilatus 2M CdTe detector taking images at 10 Hz. For each sample

at each temperature, three such 365◦ rotation scans were collected, with the detector slightly offset and the rotation

angle slightly changed to fill in detector gaps and allow for removal of detector artifacts (detailed in Ref. 19).
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Appendix C: Peak width of a disordered CDW

We describe the relationship between the CDW peak width and the density correlations in a Bragg glass and

short-range-ordered phase, following the analysis from Refs. [6, 7, 21]. Consider a 3D lattice with N sites, and atoms

arranged at ~rn = ~Rn + ~cn where ~Rn are the crystal lattice positions, and ~cn are the lattice displacements due to a

CDW. Let us describe the lattice displacements due to a unidirectional CDW with an incommensurate modulation

vector ~qc, given by

~cn = ~c0 cos(~qc · ~Rn + φn) (17)

where φn is a non uniform phase with fluctuations due to disorder interaction, and ~c0 is a uniform amplitude (amplitude

fluctuations are energetically more expensive, hence neglected). The scattering intensity at a momentum ~Q is given

by

I( ~Q) =
∑
n,m

ei
~Q·(~Rn−~Rm)〈ei ~Q·(~cn−~cm)〉

φ
(18)

where 〈· · · 〉
φ

denotes ensemble average over disordered phase configurations {φn}, and we assume a uniform disorder

averaged form factor set to unity for all atoms. For small ~c0, the I( ~Q) is simplified to,

I( ~Q) =
∑
n,m

ei
~Q·(~Rn−~Rm)

[
1− 1

2
〈
(
~Q · (~cn − ~cm)

)2
〉
φ

]
+O(| ~Q · ~c0|4)

≈
∑
n,m

ei
~Q·(~Rn−~Rm)

[(
1− 1

2
( ~Q · ~c0)2

)
+

1

4
( ~Q · ~c0)2

(
ei~qc·(

~Rn−~Rm)〈ei(φn−φm)〉
φ

+ e−i~qc·(
~Rn−~Rm)〈e−i(φn−φm)〉

φ

)]
From the above expression, we can deduce the two CDW satellite peaks at ~Q = ~G ± ~qc around each Bragg peak at

~G. Focusing on the satellite peak around ~G+ ~qc, the intensity profile is given by

I( ~Q = ~G+ ~qc + δ~q) =
1

4
( ~Q · ~c0)2

∑
n,m

eiδ~q·(
~Rn−~Rm)〈e−i(φn−φm)〉

φ
(19)

where |δ~q| � |~qc|. The density correlations 〈e−i(φn−φm)〉
φ
, which using the Gaussian approximation for small fluctu-

ations get simplified to,

〈e−i(φn−φm)〉
φ

= e−
1
2 〈(φn−φm)2〉

φ +O[〈(φn − φm)4〉
φ
]. (20)

Due to translational symmetry of the disorder averaged phase fluctuations, we can define the density correlation

function in terms of fluctuations relative to a reference point, given by

Cφ(~r) = e−
1
2 〈(φ(~r)−φ(0))

2〉
φ , (21)
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where φ(~r = ~Rn) ≡ φn. Substituting Eq. (20) and (21) in Eq. (19), we get the CDW satellite intensity as

I( ~Q = ~G+ ~qc + δ~q) ≈ 1

4
( ~Q · ~c0)2Nv−1

∫
(d3~r)eiδ~q·~rCφ(~r) (22)

where we have replaced the discrete lattice sum with an integral over ~r ≡ ~Rn − ~Rm, and v−1 is the volume of a

unit cell. The profile of the CDW peak is thus determined by Cφ(~r), whose long distance behavior distinguishes

long-range-ordered, Bragg glass, and short-range-ordered CDW phases.

1. Long range ordered CDW: Cφ(~r →∞) 6= 0 for a CDW with perfect long range ordered phase. Here, Eq. (22)

gives delta function peaks with ideally zero peak width.

2. Short range ordered CDW: When Cφ(~r) ∼ e−r/ζ , with a correlation length ζ, Eq. (22) gives a broadened

(nearly Lorentzian) peak at ~Q = ~G± ~qc + δ~q given by

I( ~Q) ∝ ( ~Q · ~c0)2ζ3
1

(1 + ζ2|δ~q|2)
2 (23)

whose full width at half maxima (FWHM) is (2
√√

2− 1)ζ−1. Thus the observed peak width is determined by the

inverse phase correlation length ζ−1, and is independent of the momentum ~Q of the peak.

3. Bragg glass ordered CDW: A Bragg glass phase is distinguished by a power law decaying phase correlation:

Cφ(r > R0) ∼ (r/R0)
−η

where η ≈ 1 in 3D is a universal exponent as shown by Refs. [2, 4], and R0 is a small distance

cut-off [see Eq. 13] that sets the onset of power law decay. For the Bragg glass, Eq. (22) in the limit |δ~q| → 0 can be

solved to get the intensity at ~Q = ~G± ~qc + δ~q as

I( ~Q) ∝
(
|δ~q|η−3

)
( ~Q · ~c0)2Rη0 (24)

For 3D, with η = 1 as shown in Ref [2, 4], the peak intensity of a Bragg glass diverges as |δ~q|−2. As with long range

order, the observed width will be the resolution limit of the detector [7].

Appendix D: Disorder pinning and asymmetry

Here we show that the presence of an asymmetry between the satellite peak intensities signals the disorder pinning

of lattice modulations. The derivation below follows from Refs [21, 25]. While the asymmetry signature was exper-

imentally observed for short range ordered CDW materials [20, 21, 33], they were also predicted to occur in Bragg

glass ordered CDW in Ref. [6, 7].

Consider a 3D lattice with atoms arranged at ~rn = ~Rn + ~un where ~Rn are the crystal lattice positions and ~un is a
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displacement from the nth lattice site. The Fourier component of the displacement modulation is given by

~u~q = N−1/2
∑
n

~une
−i~q·~Rn (25)

where N is the total number of sites. Let us model the intercalation (disorder) as modifying the original form factor

to a new value fj at random sites j. The Fourier component of the modulated form factor is given by

f̃~q = N−1/2
∑
n

fne
−i~q·~Rn . (26)

The scattering intensity at a momentum Q for this model with intercalation disorder and small lattice displacements

is given by

I( ~Q) =
∑
n,m

ei
~Q·(~Rn−~Rm)〈fnfmei

~Q·(~un−~um)〉 (27)

=
∑
n,m

ei
~Q·(~Rn−~Rm)〈fnfm

[
1 + i ~Q · (~un − ~um)

]
〉+O

(
| ~Q · (~un − ~um)|2

)
(28)

where 〈· · · 〉 denotes thermal and disorder average.

We are interested in the asymmetry of the intensities I( ~Q) between the two satellite points ~G ± ~q across a Bragg

peak at ~G, where ~q is within the first Brillouin zone. Substituting the inverse Fourier transforms of Eq. (25) for ~ui

and Eq. (26) for fi in to Eq. (28), we get the satellite asymmetry to be

I(~G+ ~q)− I(~G− ~q) = 2if̃0 ~G ·
(
〈~u−~q f̃~q〉 − 〈~u~q f̃−~q〉

)
+O

(
|~G · ~u~q|2

)
(29)

where N−1/2f̃0 = N−1
∑
j fj is the average form factor of the disordered lattice. If the lattice displacement modula-

tions are not correlated with the intercalant positions (no disorder pinning), then the term 〈~u~q f̃−~q〉 = 〈~u~q〉〈f̃−~q〉 = 0

since 〈~u~q〉 = 〈~u ~−q〉 = 0. The 〈~u~q〉 = 0 is true for both incommensurate long range ordered CDW (since the CDW

phase in each disorder configuration is arbitrary) and for short range ordered displacements (the disorder average of

the displacements is zero). Thus the leading order contribution to the intensity asymmetry is zero in the absence of

disorder pinning of lattice modulations.

On the other hand, in the presence of disorder pinning, 〈~u~q f̃−~q〉 6= 〈~u~q〉〈f̃−~q〉 and hence not trivially 0. To explicitly

see this non-vanishing of satellite asymmetry from disorder pinning, we discuss a simple model put forward in Ref. [33].

Consider a single impurity at a random site ~R0 that interacts with the charge density such that the phase of the charge

density is fixed to a value φ0 at site ~R0. The pinned CDW is given by ρn = ρ0 sin
[
~qc · (~Rn − ~R0) + φ0

]
. The lattice

modulations are in quadrature with the CDW and is given by ~un = ~u0 cos
[
~qc · (~Rn − ~R0) + φ0

]
. Taking fI as the
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atomic form factor of the impurity and f0 as that of the pure atom, the satellite asymmetry [Eq. (29)] for this single

impurity pinning gives,

I(~G+ ~q)− I(~G− ~q) = 2N−1/2f0(fI − f0)(~G · ~u0) sin(φ0) (30)

A maximum asymmetry is when (fI−f0) sin(φ0) = 1 which corresponds to the CDW having a maximum or minimum

over the impurity depending on whether the interaction is attractive or repulsive. This picture describes strong

pinning, where the CDW is pinned to a constant phase φ0 above each impurity. However, the pinning for a Bragg

glass is weak, where the phase is modulated by the collective interaction of impurities. A calculation of the asymmetry

for Bragg glass was carried out in Refs. 6 and 7, and was shown to be an experimentally observable effect in principle.

Appendix E: Momentum dependence of CDW Peak width

In addition to the phase fluctuations that destroy long range CDW order, displacement of atoms from their ideal

lattice sites (displacement fluctuations) that destroy long range lattice order will also contribute to the broadening

of the CDW peaks. Here we show that the width due to displacement fluctuations is momentum ( ~Q) dependent,

in contrast to the ~Q independent broadening due to CDW phase fluctuations. Our model is similar to that of a

paracrystal [chapter. 9 of Ref.[25]], with the modification of introducing a CDW with phase fluctuations on top

of the lattice displacements. Using the same 3D lattice with N sites as in Appendix-B, but with an additional

lattice displacement ~un that can arise from thermal vibrations or disorder interaction, the atoms are arranged at

~rn = ~Rn + ~cn + ~un where ~Rn are the lattice sites and ~cn are the CDW displacements. The scattering intensity at a

momentum ~Q [Eq. (18)] is modified for the disordered lattice as,

I( ~Q) =
∑
n,m

ei
~Q·(~Rn−~Rm)〈ei ~Q·(~cn−~cm)〉

φ
〈ei ~Q·(~un−~um)〉

u
(31)

where 〈· · · 〉
u

denotes ensemble average over lattice displacement configurations {un}, and we have assumed the lattice

displacements are uncorrelated with the phase fluctuations. The CDW intensity around ~Q = ~G + ~qc in Eq. (19) is

now modified to

I( ~Q = ~G+ ~qc + δ~q) =
1

4
( ~Q · ~c0)2

∑
n,m

eiδ~q·(
~Rn−~Rm)〈e−i(φn−φm)〉

φ
〈e−i ~Q·(~un−~um)〉

u
(32)

where the factor 〈e−i ~Q·(~un−~um)〉
u

under the Gaussian approximation gives

〈e−i ~Q·(~un−~um)〉
u

= e−
1
2 〈(~Q·(~un−~um))2〉u +O[〈( ~Q · (~un − ~um))4〉

u
]. (33)
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where 〈( ~Q·(~un−~um))2〉
u

quantify the mean squared fluctuations in relative lattice displacements. Defining a correlation

function Cu(~r, ~Q) for the displacements relative to a reference point given by,

Cu(~r, ~Q) = e−
1
2 〈(~Q·(~u(~r)−~u(0)))

2〉u , (34)

where ~u(~Rn) ≡ ~un, the CDW peak intensity in Eq. (22) is modified to,

I( ~Q = ~G+ ~qc + δ~q) ≈ 1

4
( ~Q · ~c0)2Nv−1

∫
(d3~r)eiδ~q·~rCφ(~r)Cu(~r, ~Q) (35)

What sets the displacement fluctuations apart from CDW phase fluctuations is the ~Q dependence of Cu(~r, ~Q).

It is this distinction that leads to the ~Q dependent broadening signature for the displacement fluctuations. To

see this, consider an exponentially decaying form for the displacement correlation given by Cu(~r, ~Q) ∼ e−|
~Q|2(γur).

Here γu with dimensions of length can be interpreted as the root mean square value of the relative displacement

between neighboring atoms. When combined with the short range phase correlation Cφ(~r) ∼ e−r/ζφ , Eq. (35) gives

an approximately Lorentzian peak profile at ~Q = ~G± ~qc + δ~q given by

I( ~Q) ∝ 1(
1 +

|δ~q|2

(ζ−1φ + | ~Q|2γu)2

)2 (36)

whose full width at half maxima (FWHM) is given by

FWHM ∝ ζ−1φ + | ~Q|2γu (37)

This shows the quadratic in momentum broadening due to displacement fluctuations. While the above form was

obtained for a simple displacement correlation function that decay isotropically, a more general form for the broadening

would be

FWHM ∝ ζ−1φ + γHQ
2
H + γKQ

2
K + γLQ

2
L (38)

and we do not include terms like QHQK etc. as they violate the reflection symmetry of the lattice. From a quadratic

fit to the momentum dependence of the FWHM, the contribution from phase fluctuations: ζ−1φ can be extracted as

the intercept.

Numerical illustration of momentum dependent peak broadening: To complement the above derivation,

we numerically calculate the scattering intensity [Eq. (31)] for a 1D lattice model with short range ordered CDW

phase and lattice displacements.
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(a) (b)

FIG. 1. (a): Numerically calculated intensity of a CDW peak, and (b): the momentum (Q) dependence of the full width at
half maxima (FWHM) of the CDW peaks, in a 1D lattice with 1000 sites. The intensities are calculated for three disorder
configurations: (1) pristine CDW with no disorder, (2) CDW with only phase fluctuations and (3) CDW with both phase and
lattice fluctuations. Both configurations (2) and (3) lead to a broadening of the peak [panel(a)]. However, the FWHM remains
independent of Q for the configuration with only phase fluctuations, while the FWHM for the configuration with both phase
and lattice fluctuations show a Q2 dependence. From the intercept of the Q2 dependent FWHM, we can isolate the broadening
contribution of the phase fluctuations.

On a lattice with 1000 sites, we set the CDW modulation qc = 2/7 to mimic the CDW of RTe3, and set the CDW

amplitude = 0.01. To generate a disordered phase configuration with short range correlation Cφ(|n−m|) ∼ e−|n−m|/ζφ

between sites n and m, we start with the n = 0 site where φ0 = 0 and the phases φn for each site n > 0 are selected as

φn = φn−1 + dφ where dφ is drawn from a normal distribution with zero mean and standard deviation σφ (=0.025).

This distribution generates phases whose mean square fluctuations are given by 〈(φn − φm)2〉φ = |n − m|σ2
φ, and

the phase correlation [Eq. (21)] given by Cφ(|n − m|) = e−|n−m|σ
2
φ/2. Similarly, to generate a short ranged lattice

displacement configuration, the lattice displacements un are generated as un = un−1 + du where du is drawn from

a normal distribution with zero mean and standard deviation σu (=0.001), starting with u0 = 0. This generates

displacement configurations with mean squared fluctuation 〈(un − um)2〉u = |n−m|σ2
u. We generate 400 realizations

of phase and displacement configurations and calculate the intensity using Eq. (31).

We show the calculated intensity profile of a CDW peak and the momentum (Q) dependence of the peak width in

SM Fig. 1. We see that while a short range ordered phase broadens the CDW peak whose width is independent of

Q, a short range ordered lattice leads to broadening that is proportional to Q2. In the presence of both short range

ordered phase and lattice displacements, the Q independent broadening due to phase only disorder can be extracted

from the intercept of the Q2 broadening.
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FIG. 2. A simplified illustration of X-TEC to cluster distinct intensity-temperature trajectories, I(T ), given the collection of
series {I~q(T1), I~q(T2), . . . , I~q(Td)} (d = 19 in this figure) at various momentum ~q in the reciprocal space. The raw trajectories

rescaled as log[Ĩ~q(Ti)] = log[I~q(Ti)] − 〈log[I~q(Ti)]〉T [panel (a)] can be mapped to a simple Gaussian Mixture Model (GMM)
clustering problem on a d-dimensional space, whose 2D projection (along T = 30K and T = 135K) is shown in panel (b). The
GMM identifies two distinct clusters and assigns them different colors. From the cluster means (star symbol) and standard

deviations (colored ellipsoids) of the GMM [panel (b)], we get the distinct trajectories of log[Ĩ(T )] and their standard deviation,
with colors reflecting their cluster assignments [panel (c)].

Appendix F: X-ray Temperature Clustering: X-TEC

The underlying principle of X-TEC is to identify the distinct temperature trajectories through a Gaussian mix-

ture model clustering [12]. In SM-Fig. 2, we show a simplified illustration of the GMM in action. A collection of

raw intensity-temperature trajectories [SM-Fig. 2(a)] given by {I~q(T1), I~q(T2), . . . , I~q(Td)} at various momenta ~q in

reciprocal space can be represented as a distribution of points in a d dimensional hyperspace, whose axis spans the

intensities at each temperature. For visualization, a 2D cross section of this hyper space is shown in SM-Fig. 2(b).

The figure shows that the points are separated into two distinct groups (clusters). A Gaussian Mixture Model (GMM)

clustering classifies these points into different clusters and assigns a mean and standard deviation for each cluster.

The cluster means reveal the distinct temperature trajectories in the data [SM-Fig. 2(c)], while the standard deviation

shows that the clusters are well separated. In this example, a visual inspection of the raw intensities as well as a 2D

projection can already reveal the distinct clusters. However the real data is more messy [See Fig. 1(e)], and requires

a GMM clustering on the entire hyperspace to identify the distinct trajectories.

Appendix G: Conventional peak width analysis

The conventional approach of extracting the peak width would be to take one-dimensional line cuts through CDW

peaks in the binned data and extract intensity and width parameters from fitting. Fitting domains must be chosen
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FIG. 3. A set of three one-dimensional Gaussian functions can be used to fit superstructure peaks and extract intensity and
width parameters to characterize peaks. This approach is applied here to the 432 ± qc,qc ≈ 2

7
c∗ superstructure peaks in

Pd0.02ErTe3. For all rows, the left two figures are cuts taken through superstructure peaks, with circles indicating data and
dotted lines representing fitted Gaussians; the right two figures are fitted parameters at different temperatures. Top row: Line
cuts taken along h.Middle row: Line cuts taken along k. Note that the peak become so broad along k above T ≈ 210 K that
the fitting function fails. Bottom row: Line cuts taken along l. It is notable that the full-width half maximum (FWHM) of
the fit approaches the bin width at low temperatures, indicating that the peak is resolution-limited.

arbitrarily in relation to diffuse scattering and spurious crystallographic imperfections, making this approach difficult

to apply to the entire dataset. Moreover, the necessity of determining the goodness of fit makes this approach

impractical to scale. Applying this approach to an ad-hoc choice of peaks at hkl = 4 2 3 ± qc in SM Fig. 3 shows

that the spurious signals make it difficult to find a uniform way to fit even a small number of peaks in these data,

and even the best-fitted parameters will have low precision.
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Appendix H: Peak spread analysis with X-TEC

In this section, we first provide details of the steps to extract the peak spread Γ~q(T ) [Eq. (1)] from the XRD data

and benchmark them with line cuts on selected CDW-1 peaks [SM Fig. 4]. We then show the underlying quadratic

momentum dependence of Γ~q, and the extraction of the ~q independent term Γ0 that quantifies the broadening purely

due to CDW phase fluctuations [SM Fig. 5].

1. Benchmarking peak spread

The conventional approach to extract a FWHM is shown for a CDW-1 peak at the three levels of intercalation in

SM Fig. 4 (a), (f) and (k). Our high throughput measure Γ~q [Eq. (1)] directly provides a measure for the spread of

the peak (in units of the number of pixels). This is achieved by using X-TEC to identify the connected pixels whose

intensity trajectories belong to the CDW order parameter cluster. This is shown in SM Fig. 2 (b), (g) and (l), where

the red boundary determined by X-TEC marks the extent of the CDW peaks. We quantify the spread of this CDW

peak (centered at momentum ~q) with Γ~q which is the ratio of the total intensity inside the peak boundary to the

maximum intensity of the peak. We restrict to the in-plane peak spread with intensities at integer K values of the out

of plane (b∗) axis, to avoid the lower resolution along b∗ axis [0.1 (r.l.u.) compared to 0.02 (r.l.u.) for the in-plane]

from limiting the overall resolution of the spread. The estimated Γ~q is compared with the FWHMs of the line cuts

in SM Fig. 2 (c), (h) and (m). We see that the Γ~q faithfully captures the features of the FWHMs, in particular, the

rapid onset of broadening above a transition temperature.

However, both the FWHMs and the Γ~q show an erratic temperature trajectory, reflecting the errors in the width

estimation from the small resolution peaks (the peaks are roughly spread over 2-3 pixels). Collecting all Γ~q with ~q

spanning ∼ 2000 peaks, we find a wide variation in the range of values for the spread, [see SM Fig. 2 (d), (i) and

(n)]. Buried under these seemingly erratic trajectories is the systematic ~q dependence from lattice distortions [see SM

Fig. 5] and the unique ~q independent spread Γ0 of the disordered CDW [see Fig. 3 of main text].

An important step in the estimation of Γ~q is the removal of the background intensity offset from the CDW peak

intensities. This background contribution is estimated as the average of the intensities outside the CDW boundary

in a 10x10 pixel neighborhood of the peak [the blue region outside the red boundary in SM Fig. 4 (b), (g) and (l)],

and this offset contribution is subtracted from the total and maximum intensity of the CDW peak before estimating

Γq. In SM Fig. 4 (e), (j) and (o), we show the effect of not removing the background offset on the Γ0. Keeping the
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(c)
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(h)

(g)

(m)

(l)

(d) (i) (n)

(e) (j) (o)

FIG. 4. Extracting and benchmarking the peak spread. (a): Line cut along a CDW-1 peak at various temperatures T for the
pristine sample (x = 0%). The intensities (symbols) are averaged along H = 4̄ ± 0.02 r.l.u and K = 2, and normalized with
its maximum value at the peak. The minimum intensity in the line cut is subtracted to remove any background offset. The
lines are Gaussian fits. (b): The intensity of the CDW-1 peak in the K = 2 plane [same peak as in (a)] at T = 30K, with the
X-TEC determined peak boundaries (red contour) for the x = 0%. (c): The peak spread (Γ) [Eq. (1)] for the CDW peak in
(a-b), along with the FWHM from line cuts along H (FWHM-H) and L (FWHM-L), at various T for x = 0%. (d): The T
trajectory of the peak spread (Γ~q) of 2778 CDW-1 peaks in the x = 0% data (thin colored lines). (e): Comparing Γ0 with the
background intensity offset removed (BG removed), and Γ0 keeping the background offset (Γ0 with BG). Lines are guides to
the eyes. (f-j): Same as panels (a-e) respectively but for x = 2% intercalated sample. The panel (i) shows Γ~q of 1986 peaks
(thin colored lines). (k-o): Same as panels (f-j) but for x = 2.9% intercalated sample. Panel (n) shows Γ~q of 1440 peaks.
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background intensity results in an overestimation of the spread, especially at higher temperatures where the peak

height is smaller. This is because the peak spread measure misinterprets the extra background intensity outside the

true peak as a genuine broadening of the peak.

2. Momentum dependence of peak spread

In SM Fig. 5, we show that the spread Γ~q in the XRD data has a systematic broadening with quadratic dependence

in ~q as predicted in Appendix-E. To simplify the visualization of the 3D quadratic fit in Eq. (2), we project the

momentum dependence of Γ~q to one direction by averaging over the other directions. We show the H2 dependence of

Γ~q in SM Fig. 5 (a), and the L2 dependence in (c) and (e), for the three levels of intercalation. The Γ~q fits well with

the quadratic function.

The full 3D fit of Γ~q using Eq. (2) extracts the quadratic coefficients γH , γK , γL as well as the momentum-

independent intercept Γ0. While Γ0 is reported in the main text [Fig. 3 (c-f)], in SM Fig. 5 (b), (d) and (f) we report

their respective γH , γK , and γL values.

(a) (c) (e)

(b) (d) (f)

FIG. 5. (a): The H2 dependence of the peak spread in the x = 0% sample at T=85K. The 〈ΓH〉 (symbols) is the spread
obtained by averaging Γ~q over K and L that share the same |H|. The error bars indicate standard deviation of Γ~q at |H|. The
fit: γHH

2 +Γ0 agrees well with 〈ΓH〉 within the error bars. (b): The momentum coefficients γH , γK , γL from the 3D quadratic
fit [Eq. (2) of main text] to {Γ~q} at various temperatures for the x = 0%. The lines are guides to the eye. (c): Same as (a)
but for the L2 dependence of the spread, 〈ΓL〉 (symbols) (by averaging Γ~q over H and K at |L|) for the x = 2% intercalated
sample at T=90K. The fit γLL

2 + 〈ΓL〉0 also agrees well within the standard deviation of Γ~q at L. (d): Same as (b), but for
the x = 2% intercalated sample. (e-f) Same as (c-d) respectively, but for x = 2.9% intercalated sample.
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