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Interest in modulated paired states, long sought since the first proposals by Fulde and Ferrell
[1] and by Larkin and Ovchinnikov [2], has grown recently in the context of strongly coupled su-
perconductors under the name of pair density wave (PDW). However, there is little theoretical
understanding of how such a state might arise out of strong coupling physics in simple models.
Although density matrix renormalization group (DRMG) has been a powerful tool for exploring
strong coupling modulation phenomena of spin and charge stripe in the Hubbard model and the t-J
model, there has been no numerical evidence of PDW within these models using DMRG. Here we
note that a system with inversion breaking, C3v point group symmetry may host a PDW-like state.
Motivated by the fact that spin-valley locked band structure of hole-doped group VI transition metal
dichalcogenides (TMD’s) materializes such a setting, we use DMRG to study the superconducting
tendencies in spin-valley locked systems with strong short-ranged repulsion. Remarkably we find
robust evidence for a PDW and the first of such evidence within DMRG studies of a simple fermionic
model.

Recent experimental and theoretical developments
have brought a renaissance to the idea of a modulated
superconducting state that spontaneously breaks trans-
lational symmetry (see Ref. [3] and references therein and
Refs. [4–8]). Earlier efforts towards realization of mod-
ulated superonductors[9, 10] or towards an interpreta-
tion of associated experiments[11] have relied on gener-
ating finite-momentum pairing using spin-imbalance un-
der an (effective) magnetic field, in close keeping with
the original proposals[1, 2] (FFLO). Alternatively, mo-
mentum space split, spinless fermions in the context
of doped Weyl semi-metals[12] and hole-doped transi-
tion metal dichalcogenides[13] have been proposed as a
platform for modulated superconductors due to pairing
within fermi pockets centered at finite crystal momen-
tum. On the other hand, a modulated paired state pro-
posed for cuprates requires a strong coupling mechanism
beyond Fermi surface effects.[4] Such a strong coupling
driven state has been dubbed a PDW as a state distinct
from FFLO-type superconductors.

The need for a strong coupling mechanism without
Fermi surface effects led to a search for the PDW state in
numerical simulations. Numerous variational and mean-
field studies have shown that pair-density wave type
states are energetically competitive with uniform d-wave
superconducting states in generalized t-J models, and it
is thought that PDWs may become favorable in the pres-
ence of anisotropy.[14–18] Nevertheless, numerical evi-
dence from the controlled approach of DMRG is lacking
within simple fermionic models as the only evidence of
PDW within DMRG was established in the 1D Kondo-
Heisenberg model[19]. One signature difficulty in such
a realization is that DMRG calculations on a Hubbard
or t-J model on a square lattice with spin-rotation sym-
metry often find spin and charge stripe ground states
instead of the PDW state. However, one could hope that
frustrating spin order might nudge systems into a PDW
state. Here we turn to a Hubbard model on the frus-

trated triangular lattice with broken inversion symmetry
that captures the hole-doped monolayer group IV tran-
sition metal dichalcogenides (TMD’s).

Rapidly growing interest in the monolayer group VI
transition metal dichalcogenides (TMD’s) has been fu-
eled by the exotic possibilities driven by spin-orbit cou-
pling and lack of centrosymmetry[13, 20–25] as well as
superconductivity in the n-doped TMD’s[20–22, 26–28].
While the symmetry properties of the observed supercon-
ducting states remain unknown, the different translation-
ally invariant superconducting channels for the TMD’s
have been previously classified in mean-field studies [29–
31]. Recently Hsu et al. [13] employed a weak-coupling
RG approach to investigate a repulsive interaction driven
pairing mechanism, predicting two topological super-
conducting instabilities with one of them being a spa-
tially modulated intra-pocket state. However potentially
strong correlation effects have largely been neglected de-
spite the fact that the conduction electrons have sub-
stantial d -character. In this letter we use density matrix
renormalization group (DMRG) calculations to study the
effects of spin-orbit coupling on superconducting tenden-
cies driven by repulsive interactions.

DMRG is a powerful, non-perturbative method for
studying strongly interacting systems [19, 32–36]. It has
been used with great success to explore a diverse selection
of strongly correlated phenomena highlighted by stripes,
spin-liquids, and superconductivity [19, 33–41]. However,
since DMRG is quasi-1D in nature no true long-range
order can be seen in the correlations. Thus in order to
access our system’s superconducting tendencies we imple-
ment a pair-edge-field motivated by the field-pinning ap-
proach underlying several earlier studies [19, 33, 42, 43].
By biasing the system towards a particular superconduc-
ing state and studying the emergent symmetry of the
appropriate order parameter in the bulk, one can gauge
the model’s propensity for various instabilities.

In order to capture the spin-valley locked Fermi sur-
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FIG. 1. (a) The spin-dependent staggered flux pattern for one
spin component with ±Φ flux per plaquette. An opposite flux
pattern for the other spin component guarantees time-reversal
symmetry The arrows indicate the direction of positive phase
hopping. (b) Our Fermi surface with ti+x̂,i;↑ = 2√

3
ei0.3π and

µ = 4.6 in the tight-binding model in Eqs: (1) (2). Here the
spin-valley locked, circular Fermi pockets are evident.

faces that occur in the valence band of group VI TMD’s
[20, 44, 45] in a one-band model we consider a nearest-
neighbor tight-binding model on a triangular lattice with
a staggered, spin-dependent magnetic flux of ±0.9π per
plaquette (see Figure 1(a)). This spin-dependent flux
breaks the C6v symmetry down to C3v while preserving
the time-reversal symmetry, mimicking the Sz preserv-
ing spin-orbit coupling present in the Kane-Mele model
and generating two distinct spin-polarized pockets for our
Fermi surface. Furthermore, the flux introduces a small
amount of anisotropy in the pockets (see Fig 1(b)) anal-
ogous to that present in real materials such as MoS2.[46]
Finally, we include an on-site interaction U . Hence our
model Hamiltonian is

H = −
∑
〈i,j〉

tij,σc
†
iσcjσ − µ

∑
iσ

c†iσciσ + U
∑
i

ni↑ni↓, (1)

where tij,σ is the spin-dependent complex nearest-
neighbor hopping , µ is the chemical potential, and U
is an on-site Hubbard interaction. The dispersion takes
the form of

εσ(k) = −2
∑
i

[
Re(t) cos(δi ·k)+Im(t) sin(δi ·k)σz

]
(2)

where δi ∈ {x̂,− 1
2 x̂ +

√
3
2 ŷ,− 1

2 x̂ −
√
3
2 ŷ}, σz = ± for

spin up and down respectively, we define t such that t =
ti+x̂,i;↑ , and the lattice spacing has been set to 1.

Even in the absence of the spin-valley locking special
to our model, the geometric frustration of the triangular
lattice is known to foster exotic phases. While a consen-
sus has emerged that the ground state of the Heisenberg
model is a 120◦Néel antiferromagnet[47], the Hubbard
model has been shown to have tendencies toward spin
liquid and chiral d+id superconducting states.[48, 49].

FIG. 2. A depiction of our lattice. It is periodic in the
short direction with 3 unit cells and has open boundaries in
the long direction. The ellipses on the right signify that mul-
tiple lengths are studied: L = 12, 18, 24, 36. The edge field,
shown as red lines, is a pair-field of the form given in equa-
tion 4. The nearest-neighbor hopping structure for spin up is
also shown with the spin down hopping structure being the
complex conjugate of that shown above.

It is notable that within the context of the Heisenberg
model frustration can inhibit spin-stripes.

We emphasize that due to the lack of inversion sym-
metry, even and odd pairing components can coexist[50].
Thus the Sz preserving spin-orbit coupling allows for the
mixing of Sz = 0 singlet and triplet states, i.e., the bond
pair order parameter ∆ij = 〈c†i↑c

†
j↓〉 should be an admix-

ture of singlet and triplet components:

∆singlet
ij = 〈c†i↑c

†
j↓ − c

†
i↓c
†
j↑〉

∆triplet
ij = 〈c†i↑c

†
j↓ + c†i↓c

†
j↑〉

(3)

Note that since our system lacks translational symmetry
due to open boundary conditions, the pairing symmetry
is not constrained to transform under a single irreducible
representation. Nevertheless, the real-space structure of
these bond-centered order parameters provides insight
into the nature of the dominant pairing state.

We carry out our DMRG simulations on a cylinder
with 3 unit cells in the periodic direction and 12, 18,
24, and 36 unit cells in the non-periodic direction. The
width is sufficiently large to sample both types of pockets
in the Fermi surface but not so large as to make DMRG
prohibitively expensive for our available computational
resources. We keep the band structure fixed and explore
the effects of varying U . We investigate the supercon-
ducting susceptibility by applying a pair-field along one
edge as illustrated above in Fig. A.2. In order to reveal
any inherent preferences for a particular superconduct-
ing channel, we consider two different phase structures
for the edge field: a uniform field described by the A1
irrep and a random field i.e.

∆edge
ij = V c†i↑c

†
j↓e

iφij + h.c. (4)

with the phase φij chosen to transform under the A1 ir-
rep or be random for i 6= j and 0 for i = j. We remark
that all results presented in this paper have been shown
to be independent of the phase structure of the edge field
applied [see Appendix I]. The strength of the pair-field
was fixed to be V=0.1, about an order of magnitude less
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than the hopping amplitude which is consistent with that
used in previous studies.[19, 42, 43] While the cylindricity
of our geometry and the addition of a pair field break the
C3v symmetry of the lattice and translational invariance,
if there is a well-defined structure to order parameter in
the bulk, we expect to gain information about the inher-
ent superconducting tendencies through the real space
structure of the order parameters in Eq. (3).

Our DMRG calculation utilizes the iTensor library de-
veloped by Miles Stoudenmire and Steve White.[51] We
perform up to 14 sweeps with a final bond dimension of
M=2500. This is sufficient to obtain energy convergence
to O(10−8) for our repulsive calculations and O(10−10)
for attractive calculations [see Appendix II]. We focus
exclusively on the inter-pocket instabilities of our model
where we may exploit the conservation of the Sz=0 quan-
tum number. Sz and fermion parity, N2, are conserved
quantum numbers, but the U(1) particle number symme-
try is broken by the pair field. As our starting point, we
construct a MPS that randomly samples the Sz=N2=0
sector of our Hilbert space picking 30 states from each
even particle number sector. In addition, we use exact
diagonalization (ED) to ensure correctness in the DMRG
simulations with the energetics from the two methods
agreeing to within machine precision for small 3x3 sys-
tems where ED is computationally tractable.

(a)

(b)

FIG. 3. (a) Arg(∆singlet
〈i,j〉 ) for all nearest-neighbors with

U = +2 for our 3× 24 lattice with periodic boundary condi-
tions along the short direction and open boundary conditions
along the long direction. For visibility, we truncate the plot so
that only the half farthest from the edge field is shown. The
line thickness is proportional to the pairing amplitude. (b)

We plot the real and imaginary components of ∆singlet
ij and

∆triplet
ij for i,j along the middle rung of our lattice in order to

present the phase oscillations

We initially consider a moderately attractive interac-
tion with U=−2, where uniform pairing in the A1-irrep
is expected. Data for the following statements may be
found in Appendix III. First, we note that the phase dis-
order due to edge field effects quickly disappears upon
moving into the bulk [see Fig. A1(a) in Appendix I].
Inspecting the bond-singlet component of the supercon-
ducting order parameter ∆singlet

〈ij〉 on the directed nearest-

neighbor bonds away from the probe, we find a well-
ordered uniform phase structure, Fig. A3(b). Moreover,
zooming into the phase structure within a single unit-cell,
we find the pair-field expectation value to be isotropic
and definitively s-wave. The uniform and isotropic na-
ture of the order parameter phase distribution is a robust
property of our results in the negative U regime, that is
insensitive to the profile of the edge fields and occurs
for all system sizes studied. The triplet channel behaves
analogously, displaying homogeneous f-wave pairing [see
Fig. A3(c) in Appendix III].

Armed with the attractive, U < 0, result that can
serve as a reference, we now study the moderately repul-
sive Hubbard regime with U = +2. Earlier work using
two-stage perturbative RG on a similar spin-valley locked
model with repulsive U predicted superconductivity in
the two dimensional E representation where some lin-
ear combination of p and d -wave symmetries occurs due
to the lack of inversion symmetry[13]. Unexpectedly, our
DMRG simulation in this repulsive interaction regime re-
veals a tendency to break translational symmetry along
the length of the cylinder. Specifically the system forms
a modulated paired state where both the singlet and
triplet bond pair order parameters are everywhere real
with modulation in their sign (see Fig. 3). From the
symmetry perspective the observed state is analogous to
the state proposed by [2]. Such modulation in the pair

amplitude is evident in the plot of ∆singlet
〈ij〉 for U = +2

in Fig. 3(a) where an anisotropic phase structure within
the unit-cell is repeated with period 2. A similar unit-cell
doubling is seen in the triplet channel [see Appendix IV].
We find this tendency to form a PDW is robust against
changes in chemical potential although the periodicity
depends on the chemical potential in a non-trivial man-
ner [see Appendix V]. For instance, increasing the chem-
ical potential, µ, from µ = 4.6 to µ = 6.0 enlarges the
unit-cell by an additional lattice site [see Fig. A.6]. Al-
though there has been much interest in modulated su-
perconducting states, this is the first report of a strong
coupling driven PDW within DMRG simulations to the
best of our knowledge.

To gain further insight into the observed PDW phe-
nomena, we compare oscillations in the singlet pairing
strength and in the bond charge density of the attrac-
tive case to those in the repulsive one. Since ∆singlet

ij is
characterized exclusively by π-phase shifts in the bulk,
we may project it to real space after a gauge transforma-
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tion and look at the decay properties of the pair field by
plotting it for bonds directed along the middle rung, see
Fig. 3(b). For attractive interactions, the singlet pairing
strength falls off gradually as expected from the quasi-
1D geometry of the system and exhibits slowly varing
oscillations [see Appendix III Fig. A.4] due to finite size
effects induced by the open boundary conditions[52]. On
the other hand, the pairing profile for the U = +2 sim-
ulation shows additional rapid oscillation with period 2,
see Fig. 3(b). While the number of enveloping “beats” in
the pairing profile is dependent on system size, these os-
cillations about zero occur for all repulsive Hubbard sim-
ulations near U = +2. Thus although the exact strength
of the pairing response and the penentration depth of the
edge field appear to have some dependence on the edge
field profile and the length of the lattice, the PDW-type
behavior reported has been observed for all system sizes
and all edge-field types. Intriguingly this plot strongly
resembles the plot of the same quantity in the Kondo-
Heisenberg model with PDW[19].

As the pairing amplitude profile of our U = +2 sim-
ulation has net pair amplitude on the whole system due
to the edge field, charge modulation of the same period
(period 2) is anticipated to be driven by the net compo-
nent and the modulated pairing components[3]. Indeed
the bond charge density profile for U = +2 shows the
anticipated rapid oscillation on top of the slowly vary-
ing standing wave profile [see Fig. 4]. We remark that
while both the attractive and repulsive charge bond den-
sities have oscillations that dip below their mean values
only the superconducting response of the repulsive case
has oscillations about zero suggesting that the PDW-like
phase shifts are not finite size effects.

FIG. 4. Bond charge order,
∑
σ

〈c†iσcjσ + c†jσciσ〉 for nearest-

neighbor sites, i and j, lying along the middle rung. The
bond-center coordinate is used for the x-axis.

In summary, we used DMRG to study the supercon-
ducting tendencies of a repulsive-U Hubbard model on a
triangular lattice with spin-valley locking. These tenden-
cies were probed by studying the pairing response profile
in response to uniform and random pair fields along one
edge. Our calculations indicate that the superconduct-

ing phase diagram of the model may be more complex
than what was revealed by the previous perturbative RG
study [13], with translational symmetry breaking super-
conducting states possibly in competition with a uniform
state. The PDW observed breaks translational symme-
try with the superconducting order parameter alternat-
ing sign. This atypical pairing response may be related
to the fact that Ising spin-orbit coupling and triangular
lattice consipire to frustrate any spin order including spin
stripe. This conjecture is supported by the fact that we
observe Sz-Sz correlations to be predominantly negative
without any sign of stripe response, a feature character-
istic of frustrated spin systems. Moreover, the fact that
the apparent periodicity is not related to any Fermi sur-
face properties suggest a purely strong coupling origin
of the observed translational symmetry breaking. It will
be interesting to study whether the observed PDW state
can be found in a purely two-dimensional setting using a
different method.
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Appendix I: Phase Structure Near the Random Pair-Field

Since in the main text we only provide the phase structure of the superconducting order parameter farthest from the
pair-field, we now show the edge closest to the probe for the arguably more interesting case where the edge field has a
random phase structure . We only provide the singlet plots as evidence but the triplet channel behaves analogously.
These plots illustrate the effect of the random pair-field in inducing randomness into the pairing phase and highlight
the tendency for the pairing to settle into a dominant phase far from the edge field.

(a)

(b)

U = −2

U = +2

FIG. A.1. The singlet phase structure, Arg(∆singlet
〈i,j〉 ), for (a) the attractive, U = −2, and (b) the repulsive, U = +2, for the L

= 36 lattice with random pair-edge-field where now we plot only the third closest to the pair-field. As before, the lattice has
periodic boundary conditions along the short direction and open boundary conditions along the long direction. Unlike previous
plots of this kind, the line thickness here is constant since we only want to emphasize the phase change and the decay from the
edge makes this difficult to see.

Appendix II: DMRG convergence

We check the convergence of our DMRG simulations by looking at the change in energy between sweeps. For all
simulations we start our first sweep with a maximum bond dimension of 500 states and by the 14th sweep keep up to
2500 states, the maximum allowed by our current RAM limitations. We specify an SVD truncation error of 10−12 but
in practice find that convergence within iTensor is limited to O(10−10). Typical convergence is achieved to O(10−8)
for repulsive interactions and O(10−10) for attractive interactions. Below we plot the decrease in energy between
sweeps for the L = 24, U = +2 calculation presented in the main text.
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FIG. A.2. The decrease in energy between sweeps for the DMRG caclulation in the main text (L = 24, U = +2) demonstrating
convergence.

Appendix III: Phase Structure for Attractive Interactions

In order to establish a reference for our pair-edge field approach, we explore the effect of an attractive Hubbard
interaction, U = -2, on the superconducting preferences. More specifically, we look at the bond-singlet and bond-
triplet components of the superconducting order parameter along directed nearest-neighbor bonds. Here we find that
regardless of the phase structure of the edge field, uniform or random, homogenous pairing is established in the bulk
and any phase disorder due to the edge field quickly disappears upon moving away from the edge field [see Fig. A1(a)
in Appendix I]. This induced, translationally invariant phase structure is found to be an admixture of s-wave and
f -wave pairing, as expected for a conventional supeconductor breaking parity symmetry. The uniform-A1 behavior
of the bulk order parameter is robust, being insensitive to the profile of the edge fields and system size. Note that
we have opted to use a different scheme for presenting the phase here as compared to the main text since the triplet
component cannot be presented using the previous approach. We use this alternative style whenever plotting triplet
phases but include it also for the singlet channel here along with the conventional style in order to help understand
what’s being presented.

We also provide the pairing strength along the middle rung analogous to the plot in Fig. 3(b).Here we plot the

real and imaginary components of ∆singlet
ij and ∆triplet

ij for attractive Hubbard interactions with i,j along the middle
rung of our lattice. Comparison to the analogous plot in the main text for the repulsive case, Fig. 3(b), highlights
the presence of oscillations about 0 in the repulsive case that are absent in the attractive case.
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(a)

(b)

(c)

FIG. A.3. (a) ∆singlet
〈ij〉 ), (b) Arg(∆singlet

〈ij〉 ) and (c) Arg(∆triplet
〈ij〉 ) for U = −2 along all directed nearest-neighbor bonds. Note

that (a) and (b) presents the same phase data and (a) is given only to help the understanding of the new style of plotting. Here
we provide the L=24 results, but only show the half of the lattice away from the edge probe. Recall our lattice has periodic
boundary conditions along the short direction and open boundary conditions along the long direction. The arrows point in the
direction of the phase and are also colored according to the argument. Although redundant, this is done to aid visibility. Note
that this method of plotting possesses an additional redundancy in that ∆singlet

〈ij〉 = ∆singlet
〈ji〉 and ∆triplet

ij = −∆triplet
ji .

FIG. A.4. The real and imaginary components of ∆singlet
ij and ∆triplet

ij for the attractive Hubbard regime, U = -2, of the L=24
lattice with uniform edge field. Here i,j lie along the middle rung of our lattice.
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Appendix IV: Triplet Phase Structure for Repulsive Interactions

In Fig. A.5 we provide the triplet phase plot of the L=24 lattice with uniform edge field for U = +2 case shown in
the main text. Again, for the sake of visibility, only the half of the lattice farthest from the edge field is displayed. This
result is qualitatively similar to the corresponding singlet case shown in the main text, Fig. 3(a), in that they both
break translational symmetry along the length of the cylinder with a doubling of the unit-cell. Due to the breaking
of translational symmetry, this system is not ammendable to the kind of point-group symmetry analysis performed
in Appendix II.

FIG. A.5. The triplet superconducting phase structure, Arg(〈c†i↑c
†
j↓ + c†i↓c

†
j↑〉), for all nearest-neighbors with U = +2 for our

2× 24 lattice with a uniform edge-field, periodic boundary conditions along the short direction, and open boundary conditions
along the long direction. For visibility, we truncate the plot so that only the half farthest from the edge field is shown. The
arrow points in the direction of the phase and is also colored according to the argument for visibility. Note that this method
of plotting possesses a redundency in that ∆triplet

ij = −∆triplet
ji .
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Appendix V: Effects of Chemical Potential on the PDW

We explore the role of the chemical potential in the PDW-like structure seen in the repulsive Hubbard regime. To
this end we shift the chemical potential from µ = 4.6 to µ = 6.0 for a fixed Hubbard interaction strength of U = +2.
The resultant bond-centered superconducting pairing for the singlet channel is provided in Fig. AA.6. Herein we
see a similar behavior to the µ = 4.6 case in that there is translational symmetry breaking along the length of the
cylinder. However, rather than a doubling of the unit-cell, we see a tripling of the unit-cell. This tripling also occurs
in the triplet channel which is not shown. We note that the apparent randomness on the left side of the plot isn’t due
to edge field effects since this is the third of the lattice away from the probe and instead is an artefact of the small
amplitude there relative to numerical convergence.

FIG. A.6. The phase of the bond-centered singlet superconducting order parameter, ∆singlet
〈i,j〉 for nearest-neighbors on the 3×36

lattice with random pair-edge-field where now a larger chemical potential of µ = 6.0 is used rather than that in the main text,
µ = 4.6. Here, the line thickness is proportional to the amplitude. The lattice has periodic boundary conditions along the short
direction and open boundary conditions along the long direction.
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