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After decades of progress and effort, obtaining a phase diagram for a strongly-correlated topological system

still remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement,

evaluating these non-local observables at many points in phase space can be prohibitively costly. With grow-

ing excitement over topological quantum computation comes the need for an efficient approach for obtaining

topological phase diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion

we have recently introduced. Specifically, we propose a construction of QLT that is sensitive to quasi-particle

statistics. We then use mutual statistics between the spinons and visions to detect a Z2 quantum spin liquid in

a multi-parameter phase space. We successfully obtain the quantum phase boundary between the topological

and trivial phases using a simple feed forward neural network. Furthermore we demonstrate how our approach

can speed up evaluation of the phase diagram by orders of magnitude. Such statistics-based machine learning

of topological phases opens new efficient routes to studying topological phase diagrams in strongly correlated

systems.

INTRODUCTION

Despite much interest in topological phases of matter, the

search for and detection of the finite regions of phase space

that support topological order has been a long standing chal-

lenge. This is a nontrivial challenge because microscopic

models of strongly-correlated topological order are usually

established in exactly solvable models at first [1–7]. Never-

theless, universal properties of topological phases from low-

energy effective theories, i.e. topological quantum field theo-

ries, provide a broader support for the understanding of topo-

logical phases. Naturally, much effort has gone into perturb-

ing exactly solvable models both theoretically [8–11] and nu-

merically [12–17] to investigate the stability of the associ-

ated topological phases beyond the fine-tuned solvable points.

Moreover, growing enthusiasm over the idea of using exotic

statistics of excitations for topological quantum computation

[1, 3, 18] and the experimental quests driven by related pro-

posals [19, 20] have raised the need to understand the stability

of various topological phases and establish the corresponding

phase diagrams.

It is perhaps the key interesting feature of topological

phases that simultaneously underlies challenges in their nu-

merical diagnosis: the absence of local order parameter. Nev-

ertheless various measures of non-local correlations have en-

abled progress in evaluating phase diagrams and detecting

phase transitions. Among the most successful approaches are

expectation value of Wilson loops[21, 22], and entanglement

entropy[17, 23–25]. Indeed, the non-local nature of the re-

spective estimators can make the algorithms for measuring

these costly in general. In addition, in some cases one can

use a thermodynamic signature such as specific heat to detect

the phase transition [13, 14, 23, 26]. Although a singular-

ity in specific heat is an effective indicator of a phase transi-

tion, it has the drawback that it does not reveal any informa-

tion regarding the topological aspects of the associated phases.

Hence, in addition to these standard techniques, developing a

cost-effective approach that can map out a phase diagram with

topological quantum phase transitions using key features of

the topological phase, such as non-trivial statistics, is highly

desirable.

A new strategy for a dramatic speed-up in the approximate

evaluation of phase diagrams is to use neural-network based

machine learning [27]. Efforts in this direction fall into one of

two broad categories: unsupervised learning and supervised

learning. In the unsupervised context, the task of classifying

raw state configurations with phase labels (e.g. “clustering”

to find hidden patterns or grouping in data) is one actively-

pursued goal. Several different approaches have been used,

including principal component analysis and neural networks

[28–30], resulting in a rapidly-developing sub-field. Within

the supervised learning approach, the algorithmic strategy is

perhaps more well established. There, neural networks can be

trained with data in the form of raw state configurations, each

labelled by its respective phase. Once the neural network is

trained, a new (“test”) data set is given to it, and it is tasked

with labelling each configuration with one of the phases it

has been trained to recognize. This approach has been suc-

cessful in obtaining phase diagrams with conventional ordered

phases[31–33] or chiral topological phases[34, 35]. Neverthe-

less, identifying non-chiral topological order remains surpris-

ingly challenging for such supervised machine learning ap-

proaches [31].

Here we propose a learning strategy based on the non-trivial

statistics between fundamental excitations – the key defining

property of correlated topological phases. This approach is

inspired by earlier efforts to calculate quasi-particle statistics

that rely on evaluating quantities reflecting long-range entan-

glement of correlated topological phases [36–43]. Since such

calculations are typically computationally costly, attempting

to sweep a large phase space can becomes prohibitively dif-

ficult. Hence we propose using a technique called quantum

loop topography (QLT) [35], designed around quasi-particle
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statistics in conjunction with neural-network based machine

learning. The notion of the QLT was first introduced in

Ref. [35] as a preprocessing interface between the numerical

data for a raw quantum many-body state configuration and a

feed forward neural network. The key idea was to organize

the input data based on the physical response defining the tar-

get phases to detect. This method was successfully imple-

mented for chiral topological phases in Ref. [35]. Here we

build a QLT protocol for non-chiral topological phases with

non-trivial quasi-particle statistics. We then demonstrate the

effectiveness of our QLT-based machine learning strategy by

obtaining the phase diagram of the toric code in the presence

of magnetic fields, mapping out the Z2 quantum spin liquid in

the space of the external field strengths.

The rest of this paper is organized as follows. In section II,

we present the general strategy for evaluating phase diagrams

involving topological phases using neural network based su-

pervised machine learning with quantum loop topography. In

Sec. III, we discuss the model of field-perturbed toric code

and the QLT guided by the quasi-particle mutual statistics spe-

cific for detection of the Z2 quantum spin liquid phase. In

Sec. IV, we present the architecture of our neural network and

the algorithm for performing supervised machine learning. In

Sec. V, we present the results bench-marked against conven-

tional specific heat collapse method. We then close with a

discussion and outlook.

QUANTUM LOOP TOPOGRAPHY FOR MACHINE

LEARNING

The evaluation of a phase diagram using neural network

based supervised machine learning is a process made of three

key stages [31]. The first stage is to assemble a diverse group

of input data at representative points of each phase of interest.

This collection of data sets forms the “training set”. Each el-

ement of the training set is labeled with the respective phase.

The second stage is to construct the neural network and train it

to categorize the training set data correctly by providing feed-

back with the known label. During the training process the

neural network adjusts the parameters that define the network

(the weight matrix w and bias vector b) to minimize the error

in its output y (see Fig. 1). This training stage is the most time-

consuming part of the process. The final stage is to sweep

through the phase space using a “test” data set for each phase

space point as a validation step. The speed at which the entire

phase space can be swept is one merit of the neural-network

based approach, since it can be automated with several orders

of magnitude speed up compared to calculating conventional

estimators. This speed-up, partially contributed by forgoing

averaging and working directly with fluctuation-laden data, is

fueling rapidly increasing efforts in this direction [31–35].

Quantum loop topography was introduced in Ref. [35] after

it became clear through previous efforts [32] that for success

in training, which is the most time consuming stage of ma-

chine learning, it is critically advantageous to use input data

FIG. 1. Schematic illustration of our machine learning architec-

ture. Quantum loop topography uses an ensemble of ‘minimally non-

local’ operators to extract information from the many-body systems

and creates ‘image’ with relevant information for the input into the

artificial neural network.

containing information relevant to the target phases. QLT is

a data preparation (or preprocessing) stage that builds on the

traditional notion of the characteristic response function of a

phase [35]. The necessity for QLT arises when local informa-

tion is insufficient for the phase identification as in topologi-

cal phases (and in superconducting phases). Traditionally, one

would either use maximally non-local information such as en-

tanglement entropy or explicitly evaluate the relevant response

function. Using QLT combined with machine learning, one

avoids both of these time consuming approaches while keep-

ing their key elements. A QLT is a “topographic” map made

of un-averaged and therefore fluctuating values of products of

loop-forming operators that are relevant for the response of

interest. By retaining only the loops of sizes below certain

cutoff, i.e. minimally non-local loops, a QLT can readily take

advantage of the short correlation lengths in gapped phases,

nevertheless incorporating non-local correlations. The exam-

ple target phases that two of the present authors successfully

mapped out using QLT-based machine learning in Ref. [35]

were integer and fractional Chern insulators. For such chi-

ral topological phase, the natural response function to guide

the construction of QLT was the Hall conductivity. Here we

introduce a QLT strategy designed to work for more generic

topological phases such as the non-chiralZ2 quantum spin liq-

uid.

One of the defining properties of intrinsic topological

phases is the non-trivial exchange statistics that their quasi-

particle excitations must obey. Such statistical information is

encoded into the topological quantum field theory associated

with a given topological phase through the expectation values

of Wilson loops forming non-trivial knots. When the world-

line of a quasi-particle forms a knot with that of another quasi-

particle, such a knot can only be resolved through an appropri-

ate unitary transformation in the quasi-particle Hilbert space

[1, 44, 45]. To be specific, let us consider a gapped Abelian

topological phase. The long-distance (IR) effective theories
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FIG. 2. A nontrivial knot with linking number L = 1 between two

Wilson loops C1 and C2 in 2+1-dimension space-time.

associated with such phases are Chern Simons theories with

K-matrices [46, 47]:

LCS =
KIJ

4π
ǫµνλaI

µ∂νa
J
λ − aI

µ j
µ

I
(1)

where aI
µ are U(1) gauge fields coupled to quasi-particle cur-

rents j
µ

I
, I = 1, 2, · · · labels the fundamental types of quasi-

particle excitations. For instance, the K matrix associated with

Laughlin states at filling ν = 1/m has a single entry K11 = m

while that associated with Z2 quantum spin liquid is

K =

(

0 2

2 0

)

. (2)

From the field theory perspective, the Wilson loops formed

by the quasi-particle (quasi-hole) trajectory C is defined by

W I
C ≡ P exp

(

i

�
C

aI
l dl

)

, (3)

where P is the path-ordering symbol, are the only gauge-

invariant observables. The quasi-particle statistics are en-

coded in Wilson loops through [1, 44, 45]:

PW I
C1

W J
C2
= e2πiK−1

IJ
L(C1,C2)

where L (C1,C2) is the space-time linking number between

the C1 and C2 loops. For example, we illustrate a two-Wilson

loop configuration forming a nontrivial knot (L = 1) in Fig. 2.

In a topological quantum field theory, the expectation values

of Wilson loop configurations only depend on the topology

irrespective of the size of Wilson loops involved, since a topo-

logical quantum field theory is essentially scale-free.

Nevertheless when topological phases are investigated

through lattice models, microscopic details and short-distance

(UV) physics enter the problem and long-distance (IR)

physics will only appear at length scales much longer than the

short-distance cutoff. As a result, previous numerical stud-

ies focused on the largest loops the system can support, e.g.

the two cycles of a torus [36, 37, 41, 42]. Unfortunately, try-

ing to evaluate such global objects with numerical precision

is highly costly. Clearly, the statistical information would

be present in the knots of smaller size as well [44, 45, 48],

FIG. 3. Illustration of the lattice spin model in Eq. 4. The spin-1/2’s

reside on the bonds of the two-dimensional square lattice. As and Bp

are the products of σx and σz operators around a site s and on the

boundaries of a plaquette p, respectively.

such as the one in Fig. 4b. However, the short-distance details

and perturbations prevent conventional approaches from ex-

tracting relevant information from such smaller knots, though

their configurations can be much easier to sample in Monte

Carlo calculations. Here we propose using quantum loop to-

pography based on semi-local knots to screen and build input

data for training and testing an artificial neural network (see

Fig. 1). When supervised machine learning of the neural net-

work is successfully accomplished, the resulting architecture

can scan the phase space rapidly and obtain the phase regions

of the topological phases efficiently.

Z2 QUANTUM SPIN LIQUID AND QUANTUM LOOP

TOPOGRAPHY

The Z2 quantum spin liquid is the prototypical example of

a state with a non-chiral topological order defined on a lattice

[1, 49] . It is a strongly-correlated quantum spin liquid, with

four-fold ground-state degeneracy separated from the excited

states with a full gap when defined on a torus. Its non-chiral

nature and the lack of topological edge states make the detec-

tion of Z2 quantum spin liquid even more elusive. Importantly,

its fundamental types of quasi-particle excitations, the spinon

and the vision, both have trivial self statistics yet semionic

mutual statistics: the system picks up an overall phase factor

eiθ with statistical angle θ = π upon braiding a spinon around

a vision, or vice versa.

A model known to support a Z2 quantum spin liquid phase

is [13]:

H2D = −Jx

∑

s

As − Jz

∑

p

Bp − hx

∑

j

σx
j − hz

∑

j

σz
j

(4)

where the spin-1/2 lives on the bonds of a square lattice and

As =
∏

j∈s σ
x
j

and Bp =
∏

j∈p σ
z
j

are the products of spin

operators around a site s and on the boundaries of a plaquette

p, respectively [see Fig. 3]. The hz and hx terms are external

magnetic fields in the x̂ and ẑ directions, respectively. For the
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FIG. 4. (a) A string of σz (σx) operators creates at its two ends a

pair of spinons (visions) denoted as ‘e’ (‘m’), or equivalently, moves

one spinon (vision) from one end to the other. Note that the spinon

string Ce and vision string C̃m live on the bond of the original and

dual square lattices, respectively. (b) Illustration of a nontrivial knot

between the world-lines of a spinon and a vision as a discrete lattice

version of Fig. 2.

rest of the paper, we consider system size 12×12 unless noted

otherwise.

At the special point hx = hz = 0, H2D amounts to Ki-

taev’s toric code [1]. The exact solvability of the toric code

has allowed for much progress in explicit understanding of

Z2 quantum spin liquid. Since all As and Bp commute in the

Hamiltonian, the ground states are simply given by allowing

As = Bp = 1, while the quasi-particle excitations are associ-

ated with violations that cost energy penalties: a spinon at site

s with As = −1 and a vision in plaquette p with Bp = −1. Note

that a string of σz (σx) operators
∏

j∈C σ
z
j

(
∏

j∈C̃ σ
x
j
) moves

one spinon (vision) from one end of C (C̃) to the other end,

see Fig. 4a. To illustrate the mutual statistics, consider the

process
∏

j∈p σ
z
j

that circles a spinon around a plaquette p: it

gives rise to a phase factor Bp, which is −1 if there exists a

vision inside the plaquette.

The toric code is, however, non-generic - its correlation

length is zero and quasi-particles are strictly not allowed in

the ground states. Since machine learning prefers a more di-

verse training set, as well as a finite phase space is needed

for benchmark, we consider presence of magnetic fields. The

hz (hx) magnetic field makes it more preferential to gener-

ate spinon (vision) pairs, which condense and gives rise to

a spin-polarized phase beyond a critical field strength. The

two topologically-trivial phases, usually called magnetically

ordered phase and disordered phase at either large hz or large

hx are dual to each other under σx ↔ σz transformation. The

resulting phase diagram was discussed schematically in Ref.

11 and then numerically in Ref. 13.

In practice, Eq. 4 can be mapped to a three-dimensional

classical system - the (anisotropic) Z2 gauge Higgs model

[11] via imaginary time evolution and Trotter decomposi-

tion [13]. After separating the imaginary time into a large

number of small intervals β = n∆τ the operator exp (−βH)

for the quantum partition function can be approximated by
[

exp (−∆τHx) exp (−∆τHz)
]n

. β = 1/kBT is the inverse tem-

perature, and Hz (Hx) are the terms with σz operators (σx op-

erators). Ising spin-1/2 denoted as S j lives on the cubic lattice

bonds. The statistical weight of a given {S j} configuration on

each imaginary time slice and between adjacent slices is de-

termined by Hz and Hx, respectively. After careful treatment

of the gauge redundancy, the Jx, hz, hx and Jz terms in Eq. 4

are interpreted as the vertical bond, horizontal bond, vertical

plaquette and horizontal plaquette terms in the anisotropic Z2

gauge Higgs model. For simplicity, we consider the isotropic

case where

βH3D = −λb

∑

j

S j − λp

∑

p

∏

j∈p

S j (5)

where dimensionless parameters λb and λp are related to the

parameters ot the model Eq. (4) through

λb = hz∆τ = −
1

2
ln tanh Jx∆τ

λp = Jz∆τ = −
1

2
ln tanh hx∆τ (6)

in the limit of small ∆τ. We note that the method we will

present also offers an alternative and convenient signature

of de-confinement [50] in an equivalent lattice gauge theory,

even though our focus here is mainly on the Z2 quantum spin

liquids. For the rest of the paper, we use λb and λp as pa-

rameters, sticking to the notation of Ref. 13 for benchmarking

purposes.

The three-dimensional classical model in Eq. 5 offers a con-

venient way to measure operators, which are sampled within

classical Monte Carlo Metropolis with both on-site and cluster

updates:

〈

Ô
〉

= tr
[

ρ2DÔ
]

=

∑

αγ

ρ
γ
αα

〈

Ô
〉

α
(7)

where ρ2D =
∑

αβγ ρ
γ

αβ
|α〉 〈β| is the quantum density matrix of

the original two-dimensional system in Eq. 4. α and β are two-

dimensional spin-1/2 configurations. ρ
γ

αβ
= exp

(

−Eαβγ
)

/Z is

the thermal statistical weight of the three-dimensional clas-

sical configuration with open boundary conditions α and β

along the imaginary time direction and bulk configuration γ,

whose energy Eαβγ is given by Eq. 5. Similarly, ρ
γ
αα is the nor-

malized and positive-definite weight with periodic boundary

condition α, serving as the sample probability in our Monte

Carlo metropolis. Then the quantity that contributes to the

operator expectation value is

〈

Ô
〉

α
=

∑

β

〈

α
∣

∣

∣Ô
∣

∣

∣ β
〉

· ρ
γ

αβ
/ρ
γ
αα =

∑

β

〈

α
∣

∣

∣Ô
∣

∣

∣ β
〉

· exp
(

−∆Eα→β
)

where Eα→β is the energy difference.

Since Z2 topological order has trivial quasi-particle self

statistics, to focus more on the mutual statistics we con-

sider only operators with nontrivial knots between the spinon

and vision world-lines. Namely, these are strings of σz and

σx operators with double intersections. The example illus-

trated in Fig. 4b corresponds to the operator
〈

σx
j
σz

j′
σx

j′
σz

j

〉

=
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tr
[

ρσx
j
σz

j
σz

j′
σx

j′

]

, where the vision and spinon trajectories in-

tersect twice at r and r′, before the density matrix ρ weighs

the quasi-particle correlations between the initial and final po-

sitions and effectively closes the trajectories.

In the spirit of machine learning, instead of calculating their

full expectation values, which are relatively expensive due to

averaging over the Markov chain, we settle with an individual

Monte Carlo sample α for QLT. To further simplify the QLT,

we consider instead the operators
∏

j∈Ce
σz

j

∏

k∈C̃m
σx

k
where

the strings Ce and C̃m intersect. When valued at a particular

Monte Carlo step, the original operators within QLT can be

straightforwardly derived from the ensemble of such intersect-

ing
∏

j∈Ce
σz

j

∏

k∈C̃m
σx

k
, making the latter an equally informa-

tive candidate for machine learning with QLT. Finally, string

tension and the rapidly decaying spinon-spinon and vision-

vision correlations allow us to focus on strings no longer than

a cut-off, which we choose to set to dc = 2 unless noted oth-

erwise.

MACHINE LEARNING TOPOLOGICAL PHASE DIAGRAM

Now we describe the specific procedure for studying the

phase diagram of the model in Eq. (5). Since the large λp

and small λb limit and the small λp and λb limit are well es-

tablished for the Z2 topological phase and the trivial phase,

respectively, they offer the labeled samples (y = 1 and y = 0)

needed for supervised training. We illustrate two parallel ma-

chine learning approaches with merits of their own. In the

efficiency-focused approach, we train a universal neural net-

work with a diverse training set of multiple points within the

known phase space, and then apply the single trained network

to the entire (λp, λb) phase space. In the precision-focused ap-

proach, we train a separate neural network for each λb-slice

with two sample points at large and small λp, and then ap-

ply the network to the intermediate phase space on the given

λb-slice.

For each value of λp and λb chosen for training, we con-

struct 10000 QLT data sets sampled through a classical Monte

Carlo Metropolis procedure. We also reserve a separate test

set of 20% of the size of the training set for validation pur-

poses including learning speed control and termination [27].

As illustrated in Fig. 1, once obtained, each data set serves as

an “image” for a fully-connected feed-forward neural network

with one hidden layer consisting of n = 20 sigmoid neurons.

Each neuron processes the input through independent weights

and biases w · x+ b. After the hidden layer, the outcome is fed

forward to be processed by the output neuron. The final out-

put 0 ≤ y ≤ 1 corresponds to the neural network’s judgment of

whether the quantum loop topography input state is topolog-

ical. The neural network is trained via back-propagation and

gradient descent to optimize the weights and biases. We use

the cross entropy as the cost function, with L2 regularization

to avoid over-fitting, and a mini-batch size of 10 [27].

Once the neural network is trained successfully, it can

rapidly process QLT data obtained from different parts of the

FIG. 5. Specific heat data from a range of system sizes L =

10, 12, 16, 20 is collapsed according to the finite-size scaling using

critical exponents of the three-dimensional Ising universality class.

The best collapse is achieved at critical temperature kBTc = 1.324

for λp/β = 1 and λb/β = 0.29.

phase space to yield a phase diagram. In order to establish

level of confidence on the trained network’s assessment of

whether the system is topological or not, we process 2000 in-

puts at each point to obtain statistics. Specifically, for each

phase space point (λp, λb), we find the fraction p(λp, λb) of

test inputs with ‘topological’ output, i.e., y > 0.5. To further

suppress the uncertainty due to sample fluctuations, we base

our judgment upon the average neural output ȳ over 5 QLT in-

puts from uncorrelated Monte Carlo samples: a ‘topological’

output corresponds to ȳ > 0.5; otherwise, the ȳ < 0.5 output is

considered ‘trivial’. See Supplemental Materials for details.

The extreme corners of the phase diagram in the space of

(λp, λb) have been understood for a long time [11]. First of

all, the Z2 QSL topological phase is expected in the region

with large λp and small λb, with the λp → ∞ and λb → 0

limit equivalent to the zero-field toric code. Moreover, mag-

netically ordered phase and disordered phase are expected for

large λp and λb limit and small λp and λb limit respectively

with a self-dual line λb = −0.5 ln tanh λp separating the two

topologically trivial phases by a first-order transitions. Nu-

merical pursuits of the phase diagram with increased system

sizes and computational efforts [13–16] established the phase

boundary between a disordered (magnetically ordered) phase

and topological phase at around λp . 0.76 (λb & 0.223) with

the critical λp value from the topological phase toward the dis-

ordered phase displaying a very slight negative dependence

upon increasing λb. The goal of our neural network based

machine learning approach will be to reproduce these known

results with many orders of magnitude speed-up, in a way that

can be extended to other models whose phase diagrams re-

main a open question in the future.

In order to benchmark the outcome of the neural network

based machine learning, we have also carried out a specific

heat collapse [51] along λb/λp = 0.29. We use a conven-

tional Monte Carlo method to obtain specific heat data of

the classical system in Eq. 5 for a range of system sizes



6

0.25 0.50 0.75 1.00 1.25
0.0

0.1

0.2

0.3

0.4
Magnetically ordered

Disordered

Topological

y
b

y p

0
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.00Topological

FIG. 6. Phase diagram in both λb and λp obtained with a single, uni-

versal neural network with supervised machine learning and quan-

tum loop topography. The color scale indicates the fraction p(λp, λb)

of topological response: red (blue) color is the topological (trivial)

phase. The white crosses denote the training sets. The solid black

line labels the self-dual parameters λb = −0.5 ln tanh λp.

L = 10, 12, 16, 20. We then collapse the data to the finite-size

scaling function using critical exponents of the expected three-

dimensional Ising universality class. On simulations with up

to 1.6 × 104 spins, the critical λp for a fixed λb can be deter-

mined to four digits of accuracy with about 2 core-years of

CPU time. For example, when λp/β = 1 and λb/β = 0.29,

the best collapse is obtained at temperature kBT = 1.324,

see Fig. 5. Given that a noticeable deviation is observed

as close as kBT = 1.323 and kBT = 1.325, we conclude

kBTc = 1.324 ± 0.001. This locates one critical point in the

λp-λb phase diagram at (λp, λb) = (0.7553±0.006, 0.2192). In

order to obtain the entire two-dimensional phase diagram, this

process would be required repeatedly over many other cuts.

RESULTS

First we attempt to obtain the full two-dimensional phase

diagram with a single universal neural network trained with

data sets from only two phase-space points: (λp, λb) =

(0.25,0.1) for a non-topological phase and (1.25,0.1) for the

topological phase. The resulting phase diagram shown in

Fig. 6 reproduces the known phase diagram reasonably well,

especially taking into account the rapid speed of the neural

network scanning for the Z2 topological phase. Specifically,

the neural network scanned 101 × 39 pairs of (λp, λb) param-

eters in just 4 CPU hours. The lack of diversity in the train-

ing set as a result of including data from only two points in

phase space [52] affects the reliability of the neural network

for small λb < 0.05, and also near the tri-critical point around

(λp, λb) ∼ (0.75, 0.225). Nevertheless one remarkable out-

come of this result (obtained from a single neural network

0.25 0.50 0.75 1.00 1.25
0.0

0.1

0.2

0.3

0.4
(a)

y
b

y p

0
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.00

Disordered Topological

0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0
(b)

p
y p

b= 0.2192

FIG. 7. (a): For each λb ≤ 0.22, we implement supervised training

with quantum loop topography inputs on the neural network with

λp = 1.25 for the topological phase (y = 1) and λp = 0.25 for the

trivial phase (y = 0). Then the resulting neural network is applied to

the phase space in between and builds up the phase diagram slice by

slice. The color scales indicates the fraction p(λp, λb) of ‘topological’

output, from red for the most likely to blue for the least likely. The

solid black line labels self-dual conditions. (b): one slice at λb =

0.2192 corresponding to the white dashed line in (a). The vertical red

dashed line in (b) and white dot in (a) label λp = 0.7553, the critical

value pinpointed using specific heat collapse method, see Fig. 5.

trained with only one disordered phase-space point and one

topological phase-space point) is the apparent understanding

of the duality. Specifically, although the network was trained

deep in the disordered phase as the only topologically triv-

ial example, it correctly recognized the magnetically ordered

phase also as a topologically trivial phase.

To improve the critical region, we consider a slice-by-slice

construction of the phase diagram where a series of neural net-

works are trained. The resulting phase diagram in Fig. 7(a)

is obtained with 34 different neural networks. We train one

neural network with quantum loop topography inputs from

λp = 1.25 for the topological phase (y = 1) and λp = 0.25

for the disordered phase (y = 0), at a fixed value of λb ≤ 0.22

below the magnetic ordering threshold. Then the phase space

interpolating between 0.25 ≤ λp ≤ 1.25 is scanned by that
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particular neural network. To analyze the extent of accuracy

we achieve, 2000 QLT test inputs are assessed at each (λp, λb)

for the fraction p of ‘topological’ response. Indeed, the results

that p → 0 deep in the trivial phase and p → 1 deep in the

topological phase, indicating even a single measurement can

reliably provide a trustworthy detection. Notice that not only

is the critical region relatively sharp, but the phase boundary

between the disordered phase and the topological phase now

reproduces the slightly negative slope seen in Ref. [13].

One cut at λb = 0.2192 shown in Fig. 7(b) [see the white

dashed line in Fig. 7(a)] can be compared to the specific heat

collapse results, which yielded λc
p = 0.755(1) [see red verti-

cal line in Fig. 7(b)] for the equivalent cut. Fig. 7(b) shows

p < 0.005 for λp < 0.7, deep in the trivial phase, and

p > 0.995 for λp > 0.8, deep in the topological phase. The

neural network only appears “confused” in the critical region;

we take the topological fraction of p = 0.5 as an estimate for

the critical point. Notice the neural network based location of

the critical point compares favorably against the specific heat

collapse. Obviously, the precision in determining the critical

point is compromised in the neural-network based phase di-

agram since the critical region is where the network is most

confused. Nevertheless the many orders of magnitude gain in

the computational efficiency is remarkable. Each cut (such as

the the dashed line shown in Fig. 7(a)) costs approximately 18

CPU minutes, which is a speed-up by a factor of the order of

×104 in comparison with our specific heat collapse method.

Before closing, we now turn to the finite-size effects on

the neural network output ȳ(λp) averaged over 20000 Monte

Carlo samples [see Fig. 8(a)]. Again for fixed λb = 0.2192

for comparison with the specific heat collapse, the training

sets are taken from λp = 0.25, 0.60 for the trivial phase and

λp = 0.90, 1.25 for the topological phase, respectively. The

resulting neural network then tests the Monte Carlo samples

generated at 0.25 ≤ λp ≤ 1.25. We find the outputs to be

reliably definitive (y → 0 in the trivial phase and y → 1 in

the topological phase) away from the critical region even for

the smallest system size L = 6. In addition, no obvious hys-

teresis is observed. These behaviors are in sharp contrast with

the more global probes based upon large Wilson loops [16].

The fact that even rather small systems can be used to detect

the topological phase away from the critical region is clearly

advantageous. Noticeably, the transition gets sharper with in-

creasing system size in Fig. 8(a). To capture this trend in a

more revealing manner we looked into the curvature of ȳ as a

function of λp. Specifically, we fit the higher-resolution data

in the critical region to an analytic curve and take derivatives

[53]. The data points of Fig. 8(b) are the results and the solid

curves are guide to the eyes. This curvature plot clearly high-

lights how the peak in curvature is sharpening and moving

towards the reference point obtained from the specific heat

collapse, demonstrating that our machine learning based ap-

proach can do a respectable job near criticality, upon increas-

ing system size.

0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0

b=0.2192

 L=24
 L=20
 L=16
 L=12
 L=8
 L=6

y

p

(a)

0.68 0.70 0.72 0.74 0.76 0.78
-2000

0

2000

4000

-d
2 y
/d

2 p

p

 L=24
 L=20
 L=16
 L=12

(b)

FIG. 8. (a) The neural output ȳ(λp) over the range 0.25 ≤ λp ≤ 1.25.

(b) The second derivative −d2ȳ/dλ2
p in the critical region 0.68 ≤ λp ≤

0.78 from higher-resolution data. ȳ is averaged over 20000 Monte

Carlo samples at λb = 0.2192 and different system sizes L. The red

dashed lines mark the location of the transition λp = 0.7553 obtained

using specific heat collapse, see Fig. 5.

SUMMARY AND DISCUSSIONS

We have proposed a quantum-loop-topography-based su-

pervised machine learning strategy for detecting strongly-

correlated topological phases, using quasi-particle statistics as

defining features. The quantum loop topography we devel-

oped here is a feature selection process [54] that effectively

picks out Wilson loop operators on a semi-local scale – the

key feature of a topological phase that is nevertheless min-

imally extended. Relying on the mutual statistics between

the vision and spinon excitations, quantum loop topography

enabled us to successfully train and test a simple (shallow,

fully-connected feed forward) neural network to recognize a

Z2 quantum spin liquid, map out its parameter region, and

locate the topological quantum phase transitions of a micro-

scopic interacting Hamiltonian.

Compared to existing approaches of studying the phase di-

agram of Z2 quantum spin liquids, the QLT-based machine

learning we have implemented here has two advantages: (1)
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significant speed up, and (2) targeting small-scale Wilson

loops. First, our approach offers at least a factor of O(104)

speed increase in making the same cut in the phase space,

compared to a specific heat collapse on similar system sizes.

It also demonstrates advantages in avoiding sampling large

Markov chains in our Monte Carlo calculations, and neverthe-

less achieved three-digit accuracy on target-topological-phase

recognition with as few as five Monte Carlo samples away

from the critical region. Secondly, the combination of our

QLT and machine learning makes effective use of small-scale

Wilson loops reflecting quasi-particle statistics. Traditionally,

diagnosis of topological phases and de-confined gauge theo-

ries [50] has largely relied on long-range entanglement prop-

erties in order to avoid intractable short-distance fluctuations.

However, we have demonstrated that one can use semi-local

operators as a pre-processing step for neural networks, that

can be trained to recognize key features even in noisy data.

Further, since QLT is semi-local, the approach does not de-

pend on boundary conditions, and even small systems can

yield reliable results on labelling the phase.

Going beyond the Z2 quantum spin liquids, the model of

QLT featuring quasi-particle statistics that we have intro-

duced here can be generalized to other non-trivial topologi-

cal phases, including ones with non-Abelian excitations. The

speed up will be particularly beneficial for the study of higher-

dimensional systems, such as the three-dimensional Z2 topo-

logical phases [6] and Fracton topological order [8, 9]. The

fact that these phases also feature multiple types of quasi-

particles with different mutual statistics makes them an ex-

citing future direction to study with our algorithm. Finally,

we would like to point out that the QLT constructed here and

the QLT we constructed in Ref. [35] are guided by distinct

defining properties of the phases of interest: Hall conductivity

for chiral topological phases and mutual statistics for the Z2

quantum spin liquid. Nevertheless, both QLT layers enabled

successful evaluation of the phase diagrams using a shallow

network with orders of magnitude speed up. From the broader

perspective of machine learning, the idea of a QLT layer us-

ing particular operators to select relevant features as inputs

to the neural network is an example of a feature selection

layer [54]. Our success in Ref. [35] and again in this paper

advocates QLT – and the idea of selecting defining features

via responses, statistics, or beyond – as a general strategy for

machine learning applied to quantum condensed matter prob-

lems.

Acknowledgements: We thank Fiona Burnell, Simon

Trebst and Paul Ginsparg for useful discussions. We also

thank Institute for Theoretical Physics, University of Cologne

for hospitality during the Quantum Machine Learning work-

shop, where some of these ideas were consolidated and the

paper was finalized. YZ acknowledge support through the

Bethe Postdoctoral Fellowship and E-AK acknowledges Si-

mons Fellow in Theoretical Physics Award #392182 and DOE

support under Award de-sc0010313. Simulations were per-

formed in part on resources provided by SHARCNET through

Compute Canada. RGM acknowledges support from NSERC,

the Canada Research Chair program, and the Perimeter Insti-

tute for Theoretical Physics. Research at Perimeter is sup-

ported through Industry Canada and by the Province of On-

tario through the Ministry of Research & Innovation.

∗ frankzhangyi@gmail.com
† eun-ah.kim@cornell.edu

[1] A. Kitaev, Annals of Physics 303, 2 (2003).

[2] A. Kitaev, Annals of Physics 321, 2 (2006).

[3] J. Haah, Phys. Rev. A 83, 042330 (2011).

[4] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen,

Science 338, 1604 (2012).

[5] X.-G. Wen, arXiv:1612.01418.

[6] C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).

[7] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007).

[8] S. Vijay, ArXiv e-prints (2017),

arXiv:1701.00762 [cond-mat.str-el].

[9] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157 (2016).

[10] V. Karimipour, L. Memarzadeh, and P. Zarkeshian,

Phys. Rev. A 87, 032322 (2013).

[11] E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682 (1979).

[12] S. Dusuel, M. Kamfor, R. Orús, K. P. Schmidt, and J. Vidal,
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FIG. 9. The ratio of ‘topological’ response as a function of λp at

fixed λb = 0.025. The neural network is prepared with training set

using λp = 1.25 for the topological phase (y = 1) and λp = 0.25 for

the trivial (disordered) phase (y = 0), and then applied to the phase

space in between. The decision is based upon the criteria that average

neural output ȳ > 0.5 over a number of uncorrelated samples. The

vertical red dashed line at λp = 0.76 is the approximate location of

the transition.

Supplemental Materials: fluctuation suppression via sample

binning

Since our quantum loop topography is built upon individual

Monte Carlo samples and forgoes the Markov chain, the input

into and thus the output y from the artificial neural network

naturally have fluctuations irrespective of the implementation

of the supervised machine learning, and may sometimes in-

fluence the decision’s accuracy. For example, using the sim-

ple criteria y > 0.5 to determine whether a single output is

‘topological’, one can achieve accuracy of > 99.5% deep in

the topological phase (λp > 0.8) as well as the trivial phase

(λp < 0.y) at relatively large λb ≥ 0.1; however, at small

λb ≤ 0.05, such accuracy decreases to ∼ 96%, see Fig. 9.

To suppress the impacts of the fluctuation, we instead judge

‘topological’ or ‘trivial’ based upon whether ȳ > 0.5, where

the neural output is average over a small bin that consists of

multiple Monte Carlo samples. Indeed, with bins as small as

5 samples, accuracy away from the critical region > 99.5% is

obtained once again even at small λb, see Fig. 9.

Note that we have kept intact the algorithm of supervised

machine learning and the architecture of the neural network

and quantum loop topography. Instead, our binning only kicks

in after we have obtained our original neural network’s out-

puts, thus retaining full legitimacy of the discussion and anal-

ysis on the supervised machine learning and quantum loop

topography.

http://arxiv.org/abs/1610.00462
http://arxiv.org/abs/1611.01518
http://dx.doi.org/ 10.1103/PhysRevB.85.235151
http://dx.doi.org/10.1103/PhysRevB.91.035127
http://dx.doi.org/10.1103/PhysRevB.88.195412
http://dx.doi.org/10.1103/PhysRevB.89.195144
http://dx.doi.org/10.1103/PhysRevB.91.125123
http://dx.doi.org/10.1103/PhysRevLett.110.236801
http://dx.doi.org/10.1103/PhysRevLett.110.067208
http://dx.doi.org/10.1103/PhysRevB.95.100402
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevB.46.2290
http://dx.doi.org/10.1103/PhysRevLett.65.1502
http://dx.doi.org/10.1103/PhysRevB.72.045141
http://dx.doi.org/10.1126/science.1201080
http://stacks.iop.org/1367-2630/13/i=2/a=025009
http://dx.doi.org/10.1103/PhysRevLett.28.1516
http://dl.acm.org/citation.cfm?id=944919.944968

