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One dimensional hybrid systems play an important role in the search for topological superconduc-
tivity. Nevertheless, all one dimensional hybrid systems so far have been externally defined. Here
we show that one-dimensional domain wall in a nematic superconductor can serve as an emergent
hybrid system in the presence of spin-orbit coupling. As a concrete setting we study the domain
wall between nematic domains in FeSe, which is well established to be a nematic superconductor.
We first show on the symmetry grounds that spin-triplet pairing can be induced at the domain
wall by constructing a Ginzburg-Landau theory. We then demonstrate using Bogoliubov-de Gennes
approach that such nematic domain wall supports zero energy bound states which would satisfy
Majorana condition. Well-known existence of these domain walls at relatively high temperatures,
which can in principle be located and investigated with scanning tunneling microscopy, presents
new opportunities for a search for realization of Majorana bound states.

The realization that one-dimensional hybrid systems
with spin-orbit coupling (SOC) [1, 2] or magnetism [3]
can offer a new arena for topological superconductivity
[see Ref. 4 and references therein] has led to renewed
interest in one-dimensional superconductors. Moreover,
broader appreciation of edge state properties of Dirac
systems such as Weyl semimetal [5, 6], graphene [7], and
nodal superconductors including a d-wave superconduc-
tor [8, 9] have emerged. Unfortunately, however, most
of these systems require rather special conditions operat-
ing at extremely low temperatures. On the other hand,
little attention has been paid to the fact that a domain
wall in a superconductor with additional Z2 symmetry
breaking could form a new type of hybrid systems, al-
though nematic order in superconducting phase is com-
mon [10, 11]. In iron-based superconductors, in partic-
ular, robust signatures of nematic phase transition has
been detected and imaged [12, 13]. Boundaries between
nematic domains, embedded in a spin-orbit coupled sys-
tem, provide a new possibility towards realizing a novel
one-dimensional superconductor. Motivated by this, we
consider a new emergent hybrid situation of nematic do-
main wall in FeSe.

FeSe has generated much interest as a superconductor
which exhibits nematicity without additional complica-
tion from magnetic order [14, 15]. Through real space
probes, boundaries between two such nematic domains
have been observed [16–18]. In this letter, we study
the structure of superconducting pairing at nematic do-
main walls using symmetry analysis, and argue that spin-
triplet pairing can be induced through spin-orbit cou-
pling. Furthermore, we show, through Bogoliubov-de
Gennes approach, that the ends of domain walls can sup-
port zero energy bound states. We also remark on the
connection between our results and the recent works on
the edge states of nodal superconductor [19, 20].

The superconducting gap structure of FeSe is still an
unsettled issue. The two most widely discussed pair-

symmetry tetragonal orthorhombic domain wall

operation phase phase [11̄0]

2C4 ○ × ×

C2 ○ ○ ×

2σv ○ ○ ×

σd(x − y) ○ × ○

σd(x + y) ○ × ×

point group C4v C2v Cs

TABLE I. Point group symmetries in different phases. ○ and
× respectively denote good and broken symmetry operations.
The linear polynomial p in σd(p) defines the mirror plane by
p = 0.

ing symmetries of iron-based superconductors are s-wave
and dx2−y2-wave [21]. In the tetragonal phase of FeSe,
the point group symmetry on a surface of bulk material
or of a single layer grown on a substrate is C4v, and s-
and dx2−y2-wave belong to different representations of the
point group (A1 andB1, respectively) and hence the spin-
singlet pairing is either purely s-wave or purely dx2−y2-
wave. However, in the orthorhombic phase (a ≠ b and
γ = 90○, where a and b are the lengths of the lattice
vectors and γ is the angle between them) the four-fold
rotation (C4) and diagonal mirror reflection (σd ) sym-
metries are broken, resulting in C2v as the reduced point
group symmetry [see Tab. I]. In C2v, s-wave and dx2−y2-
wave are no longer distinguished, while other represen-
tations (A2, B2, and E) of C4v stay symmetry-distinct
from them. The pairing gap in the nematic phase there-
fore is a mixture of s-wave and dx2−y2-wave. Within a
Ginzburg-Landau (GL) theory, this mixing is described
by

Ls⋅d = ηs∗dx2−y2 + c.c. (1)

where η is a real field representing the strength of ne-
maticity, and s and dx2−y2 are the pairing order param-
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FIG. 1. Induced order parameter between two nematic do-
mains. (a) (s±d) domain wall across which dx2−y2 -wave com-
ponent changes sign. (b) (d ± s) domain wall across which
s-wave component changes sign. The induced p-wave com-
ponent on the domain wall depends on which singlet order
parameter changes sign.

eters in the corresponding channels. Since s is in the
trivial A1 representation of C4v, while both dx2−y2 and η
are in the B1, their product is trivial.

A domain wall between two nematic domains a > b and
a < b forms a well-defined atomic junction when it is along
the diagonal direction; it is indeed what is observed in
FeSe [18] and also in other iron-pnictides in the nematic
phase [16]. Under either C4 or σd symmetry operation
dx2−y2-wave component changes sign, while s-wave com-
ponent is invariant. Therefore, the relative sign between
the mixed s- and dx2−y2 -wave components flips across the
domain wall. This change of relative sign between s-and
dx2−y2- component can manifest in two distinct ways: (1)
the s-wave component stays constant or (2) the d-wave
component stays constant across the domain wall. We
refer to these two types of domain walls as (d ± s) and
(s ± d), respectively.

A so far little noted fact is that additional pairing com-
ponents can be mixed in locally at the domain wall be-
cause of the lower symmetry of the domain wall. On a
diagonal domain wall parallel to the [11̄0] plane as in
Fig. 1, all the symmetry operations of C4v are broken
except σd(x − y): the mirror reflection with respect to
the [11̄0] plane [see Tab. I]. Since the component that
remains finite at the domain wall behave distinctly un-
der σd(x− y) for the (s± d) case [Fig. 1(a), s component
is even] and the (d±s) case [Fig. 1(b), dx2−y2 component
is odd], the new symmetry induced components also dif-
fer qualitatively for the two cases. Furthermore the SOC
that is known to be substantial in FeSe [22–24] has un-
usual implications at the domain wall.

In the presence of the SOC, SU(2) spin-rotation sym-
metry is broken and singlets and triplets can mix in prin-
ciple. However, when the SOC conserves Sz, C2 sym-
metry still present within each nematic domains forbids
mixing between singlets and triplets in the bulk of the

system. What has been overlooked so far is the fact that
the domain wall itself lacks C2 symmetry and hence a Sz
preserving SOC can couple p-wave components in the to-
tal Sz = 0 channel with singlet components. This means
the domain wall forms an emergent quasi-1D system with
symmetry induced p-wave components.

Now we consider the (s±d) case and (d±s) case sepa-
rately. For the (s±d) case [see Fig. 1(a)], the component
that stays finite at the domain wall is s-wave, which is
even under σd(x − y). Now the lack of the C2 symmetry
on the domain wall allows for dxy, which is also even un-
der σd(x− y), to mix in. But most importantly a p-wave
component perpendicular to the domain wall, (−px+py)-
component, can be mixed in. One way to see this is to
recognize that (−px+py) is also even under σd(x−y) since
σd(x−y) affects both the spatial and spin coordinates of
p-wave components. For instance,

px ∼ cx̂,↑c−x̂,↓ + cx̂,↓c−x̂,↑, (2)

where x̂ is a spatial vector parallel to the x-axis trans-
forms to −py under σd(x−y). Similarly, py transforms to
−px. Hence (−px+py) is even under σd(x−y). Using the
language of Ginzburg-Landau theory, the (s± d) domain
wall imposes a gradient in the dx2−y2 component perpen-
dicular to the domain wall, i.e., ∇dx2−y2 ∝ (1,−1). Since
py transforms as −x̂ and px transforms as ŷ, (p∗y∂x+p∗x∂y)
transforms as B1 representation of C4v. Hence the fol-
lowing coupling term is allowed by symmetry

Ls±d = γ(p∗y∂x + p∗x∂y)dx2−y2 + c.c.. (3)

Now turning to the (d±s) case [Fig. 1(b)], the component
that stays finite at the domain wall is now dx2−y2 , which
is invariant under σd(x − y) followed by a gauge trans-
formation by π. From Eq. (2), px + py is also invariant
under the same discrete transformation and hence now
a p-wave component along the domain wall is induced
[see Fig. 1(b)]. From the GL theory perspective, it is the
s-wave component that changes sign across the domain
wall and hence the non-zero gradient is ∇s ∝ (1,−1).
(p∗y∂x − p∗x∂y) transforms as A1 representation, now the
symmetry allowed coupling term is

Ld±s = γ(p∗y∂x − p∗x∂y)s + c.c. (4)

This implies that the gradient of s-wave component im-
posed by the domain wall in the dominantly dx2−y2-
wave nematic superconductor induces a p-wave compo-
nent along the domain wall direction, defining an emer-
gent 1D p-wave superconductor.

The above symmetry-based insights can be readily con-
firmed through an explicit microscopic calculation. For
demonstration purpose, consider a two band toy model
whose hopping is given in terms of operators cα,σ(r)
which annihilate an electron at site r with orbital α =
xz, yz and spin σ =↑, ↓ as

Hkinetic(r, r′) = t(r − r′)σ0 − µδr,r′τ0σ0 − λδr,r′τ2σ3 (5)
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(a)

dx²-y² nodal
directions

(b)

FIG. 2. Spatial distribution of pair amplitude in p-wave chan-
nel measured across a domain wall (a) when uniform s-wave
pairing term is imposed, and (b) when uniform dx2−y2 -wave
pairing is imposed. The direction of each arrow in (a) and (b)
represent the direction of p(r) component at each point as de-
fined in Eq. (8). The inset of (b) shows the nodal directions
of the dx2−y2 -wave component. Here we set µ = 0.2, λ = 1,
txz,xz(x̂) = 1, txz,xz(ŷ) = −0.5, txz,xz(x̂ + ŷ) = txz,yz(x̂ + ŷ) =
0.2, ∆ = 0.2, and η0 = 0.2.

where τi and σi for i = 0,1,2,3 are identity and Pauli
matrices operating on orbital and spin spaces, respec-
tively. Here, µ and λ chemical potential, and spin-orbit
coupling, and t(ρ) is a matrix in orbital space which
parametrizes hopping. In addition, we impose uniform
singlet pairing of the dominant component for each do-
main wall configuration through

Hpair = ∆∑
r
∑

α=xz,yz
fαc

†
α,↑(r)c

†
α,↓(r) +H.c. (6)

where fα is the orbital form factor: fα = fsα ≡ 1 for s-

wave, and fα = f
dx2−y2

α ≡ [τ3]α,α for dx2−y2-wave. For
(s ± d) domain wall we impose a uniform s-wave pairing
and for (d ± s) domain wall we impose a uniform dx2−y2
pairing.

Now we impose a sharp nematic domain wall profile
through an on-site orbital imbalance that changes sign
across the domain wall, i.e.,

Hnematic(r, r′) = δr,r′η(r)τ3σ0. (7)

where η(x, y) = η0(2Θ(x − y) − 1). We then solve this
mean-field theory to obtain the Bogoliubov eigenstates
and measure the pair amplitudes on sites and nearest
neighbor bonds with the obtained eigenstates. Without
nematicity defined in Eq. (7), the measured pair ampli-
tudes will trivially follow the symmetry of the imposed
uniform pairing in Eq. (6). But the imposed nematic
domain wall induces secondary components both in the
domains as well as on the domain wall. In particular,
plots of Sz = 0 spin-triplet components defined by

p(r) = ∑
α=xz,yz
ρ=±x̂,±ŷ

ρ⟨cα,↑(r + ρ)cα,↓(r) + (↑ ←→ ↓)⟩. (8)

(a)

(b)

FIG. 3. Low lying eigenstates of a BdG Hamiltonian with a
(d ± s) domain wall for n’th positive energy eigenstates (a)
without p-wave component, and (b) with p-wave component
at the domain wall. The spectra (the left most panels) and
the spatial distribution of wave-function amplitudes ∣ψn(r)∣
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of n = 1,2 and 3. The dashed lines indicate the location of
the domain wall.

in Fig. 2(a) clearly shows p-wave components concen-
trated on the domain walls with its direction perpen-
dicular to the domain wall for (s ± d) case and parallel
to the domain wall for (d ± s) case. Interestingly, the
(s ± d) case can be viewed as two edges of d-wave super-
conductors brought close to each other. From this view
point, the induced p-wave perpendicular to the domain
wall is a way a pair of flat-band zero modes predicted in
Refs. [19, 20] pair up to gap out the low energy spec-
trum. Alternatively a large p-wave component parallel to
the nematic domain wall can defining an emergent one-
dimensional topological superconductor for the (d ± s)
case. From the symmetry classification perspective [25],
our system belongs to the DIII class with time reversal
symmetry as in Ref. [26] with one difference being that
our block Hamiltonians for each Sz blocks belong to AIII
class. Hence the (d± s) opens possibility for zero energy
Majorana bound states at the end of the “wire”.

To demonstrate the implication of the emergent p-wave
wire on the (d ± s) domain wall, we now consider a sim-
ple one-band Bogoliubov-de Gennes Hamiltonian. We
consider two limits: when p-wave component is zero and
when it is large. We work with a Bogoliubov-de Gennes
Hamiltonian

Hr,r′ =
⎛
⎝
tr,r′ ∆r,r′

∆∗
r′,r −tr,r′

⎞
⎠
. (9)

The hopping includes chemical potential and nearest
neighbor hoppings tr,r′ = −µδr,r′ − tδ⟨r,r′⟩, with µ = −3
and t = 1. The imposed pairing is a superposition of uni-
form dx2−y2-wave with domain-defining s-wave compo-
nent (changing sign across the domain wall) and induced
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p-wave component local to the domain wall. The low
energy spectra of the domain wall with and without the
induced p-wave pairing differ qualitatively. Figures 3(a)
and 3(b) show the energies of the low-lying single parti-
cle excitations near a (d ± s) domain wall and their spa-
tial profile, without and with the induced p-wave compo-
nents, respectively. In both cases, we have set ∆d = 0.6,
∆s = 0.4, and ξ = 8. The p-wave component ∆p is set
to zero and 150 in Figs. 3(a) and 3(b), respectively. In
the leftmost panels of Figs. 3(a) and 3(b), we plot posi-
tive the eigenenergies, since the product of time-reversal
and particle-hole symmetry ensures that the eigenener-
gies come in (E,−E) pairs. Without the p-wave com-
ponent on the domain wall, the excitation gap remains
non-zero. When large p-wave component is introduced,
on the other hand, energies of the first two eigen states
drop to a value indistinguishable from zero within our
calculation. These zero modes peak at ∼ ξ away from
the center of the domain wall on both of its sides, which
account for the multiplicity of two for each spin state.
Hence our domain wall supports four-channels of spin-
less p-wave wires.

Interestingly, the symmetry analysis we used here ap-
plies to a related situation of a clean edge of a d-wave
superconductor [19, 20]. It was shown in Ref. [20] using
quantum Monte Carlo simulations that ferromagnetic in-
stability of Majorana flat band at a [110] edge of a dx2−y2
discussed by Potter and Lee [19] accompanies p-wave
pairing along the edge. From the GL-theory perspective
we have been using throughout this letter,

LM−t ∝Mz (p∗x∂x − p∗y∂y)dx2−y2 + c.c. (10)

is a symmetry allowed term. This is because the magne-
tization order parameter Mz belongs to A2 representa-
tion while p∗x∂x − p∗y∂y, and dx2−y2 respectively falls into
B2, and B1 representations. Since the product is trivial,
such a term is allowed and non-zero magnetization will
be accompanied by p-wave pairing along the edge. This
precedence of correspondence between exact numerical
solution and our symmetry analysis lends further confi-
dence to our predictions.

To summarize, we considered the problem of singlet-
triplet mixing on a nematic domain wall in a supercon-
ductor with Sz preserving spin-orbit coupling with FeSe
in mind. First we noted that C2 symmetry of each ne-
matic domain requires the order parameter representa-
tion to be a mix of d-wave and s-wave component. Fur-
ther lowering of symmetry on the domain wall allows for
spin triplet components to mix in. We then noted that
two distinct realizations of domain boundaries are possi-
ble depending on the dominant order parameter compo-
nent. Specifically when the d-wave component is more
dominant, the s-wave component changes sign across
the domain wall(d ± s domain wall) whereas when the
s-wave component is more dominant the d-wave com-
ponent changes sign across the domain wall (s ± d do-

main wall). The two types of domain wall each sup-
port a locally induced spin-triplet p-wave components
along different directions: p-wave along the wall direc-
tion for the (d ± s) domain wall and p-wave perpendicu-
lar to the wall direction for the (s±d) domain wall. The
p-wave component aligned parallel to the domain wall
raises a tantalizing possibility of realizing a emergent 1D
triplet superconductor with only four channels. Indeed
our Bogoliubov-de Gennes calculation shows that such
emergent 1D triplet superconductor will support Majo-
rana zero-energy bound states. Given growing under-
standing of significance of d-component in FeSe [27–29],
our findings call for further investigation of domain walls
in FeSe and a search for Majorana zero modes at higher
temperatures.
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