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Despite its seemingly simple composition and structure, the pairing mechanism of FeSe remains
an open problem due to several striking phenomena. Among them are nematic order without
magnetic order, nodeless gap and unusual inelastic neutron spectra with a broad continuum, and
gap anisotropy consistent with orbital selection of unknown origin. Here we propose a microscopic
description of a nematic quantum paramagnet that reproduces key features of neutron spectra
averaged over nematic domains. We then study how the spin fluctuations of the local moments lead
to pairing within a spin-fermion model. We find the resulting superconducting order parameter to
be nodeless s± d-wave within each domain. Further we show that orbital selective Hund’s coupling
can readily capture observed gap anisotropy. Our prediction for the inelastic neutron spectra within
a single nematic domain calls for inelastic neutron scattering in a detwinned sample.

The pairing mechanism and gap symmetry of bulk1–3

and single layer4 FeSe is an open issue that inhibits
an overarching understanding of iron-based supercon-
ductors. Although a spin-fluctuation mediated pairing
scenario is a broadly accepted mechanism in iron-based
superconductors,5,6 much debate continues to focused
around two distinct perspectives: weak coupling and
strong coupling. Weak coupling approaches are sensitive
to the band structure and generally predict dominantly
(π, 0), (0, π) spin density wave fluctuations that couple
hole pockets to electron pockets in all Fe-pnictides as well
as in bulk FeSe.7 Strong coupling approaches take strong
electron-electron correlations to generate quasi-localized
moments that would interact with itinerant carriers.

FeSe presents new challenges to both perspectives, in-
cluding explaining its nematic order8(see Fig 1(a)), its
absence of magnetism, its gapped but active spin fluctu-
ations at (π, π) in addition to (π, 0)9 and its nodeless su-
perconducting gap. There have been much efforts to ad-
dress these issues. RPA based weak-coupling approaches
focused on looking into implications of assumed nematic
order.10,11 Renormalization group approaches found the
same effective interaction promoting spin density wave
to be also promoting orbital order.7,12,13 Approaches fo-
cusing on sizable local moments14 led to proposals of
quadrupolar order accompanying nematic order15,16 and
the proposal of an AKLT-like quantum paramagnetic ne-
matic state.17 Nevertheless, strikingly unique inelastic
neutron spectra (INS) of FeSe evade the approaches so
far one way or another. Specifically, the spin gap, the
coexistence of Neel fluctuation at (π, π) and stripe fluc-
tuation at (π, 0), and the striking continuum between two
bands over an energy range of ≈ 200meV9 are all beyond
dispersing one-magnon band picture.

The absence of the stripe order common in Fe-
based superconductors was attributed to the notion of
frustration.17,18 Specifically, first principles calculations
by Glasbrenner et al. 18 showed that various ordering pos-
sibilities are in close energetic competition over a wide
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FIG. 1: (Color online) (a) Phase diagram of FeSe. (b) Lattice
structure of FeSe. The black dots represent Fe atoms, and the
orange dots represent Se atoms above and below the Fe plane.
J1−4 denote the exchange couplings. (c) The nematic quan-
tum paramagnetic state of FeSe. Each ellipse with two dots
represents an S = 1 spin. The red and blue lines represent
bonds connecting odd and even columns of spins.

range of model parameters for FeSe. Wang et al. 17 pro-
posed a strong-coupling mechanism for nematic order
based on this frustration: local moments form a quasi-
one dimensional AKLT-like state that is a quantum para-
magnetic (QPM) that naturally breaks C4 symmetry of
the square lattice into C2. Indeed FeSe is close to a clas-
sic situation for frustrated magnets in the much studied
J1-J2 model19,20(see Fig. 1(b)), with J2 ≈ J1/2. It has
been noted from DMRG studies that J1-J2 model has
an intermediate paramagnetic phase between stripe or-
der and Neel order state.21,22 A recent DMRG study of
J1-J2-K1-K2 spin model found a nematic QPM state be-
tween the Neel and stripe ordered states.23 Nevertheless
INS spectra of FeSe with low energy weights at (π, 0),
(0, π) and at (π, π) that merge around (π, π) at higher
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energies (see Fig. 2) do not fit into any of the previously
considered quantum paramagnetic states. In this letter
we propose a microscopic description of the frustration
driven nematic QPM state that captures the observed
INS. We then investigate the implication of dramatically
anisotropic spin-fluctuation spectra of the proposed state
on the nature of superconductivity.
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FIG. 2: (Color online) (a, b, c): Neutron scattering results for
the dynamic spin structure factor S(qx, qy, ω) at qy = π (a),
ω = 50, 100 meV (b, c).9 (d, e, f): The corresponding results
from theoretical calculation using SBMFT summed over two
nematic domains.

In FeSe, there is evidence that local moments with spin
close to one14 coexist with itinerant carriers of all three
t2g orbitals.24–26 In order to capture the dual character27

of local moments and itinerant carriers simultaneously we
turn to a spin-fermion model28–33: H = Hc +HS +Hint,
whereHc andHS describe the itinerant carriers and local
moments respectively that are coupled through Hint. For
the spin model we consider

HS =
∑
ij

JijSi · Sj , (1)

with exchange interaction Jij on a square lattice (Fig.1b).
The two dominant interactions for the Fe-spins are
the nearest neighbor J1 and the next nearest neigh-
bor J2 exchange interactions as in other Fe-based
superconductors,34,35 except that FeSe is in a more frus-
trated regime.18

Since the J1-J2 spin model is a prototype of frustrated
magnetic systems, the model has been extensively stud-
ied using various methods (see19–22 ). In particular, at
J2 = J1/2, the spin Hamiltonian can be written in the
elegant form HS = J2

∑
(S1 +S2 +S3 +S4)2 up to a con-

stant, where S1−4 are the four spins on each plaquette
and the summation is over all plaquettes.20 The ground
states thus have the special property that the four spins
on a plaquette sum to zero, i.e. S1 + S2 + S3 + S4 = 0.
However as a highly frustrated model, the precise phase

diagram of J1-J2 spin model is still elusive and there is
no method to study dynamics microscopically. Hence we
take a phenomenological approach guided by (1) the ob-
served inelastic neutron spectrum,9 and (2) the classical
condition of S1 + S2 + S3 + S4 = 0 on a plaquette.

A prominent feature of the INS data9 is its broad
continuum of spectral weight (Fig.2a) without any one-
magnon branch. Intriguingly such a continuum is ex-
pected in a quantum spin liquid with deconfined spinons
in two-dimension in an insulating magnetic system.36 In
fact, the shape of the upper and lower bounds in Fig.2
resemble a 1d-like spinon dispersions: ω ∼ sin kx

37–39 ex-
cept for the low energy gap in the spectra. However in a
spin 1 systems on a square lattice, spinons have most of-
ten been found to be confined to form AKLT chains once
fluctuations are taken into account. AKLT chains have
a one-magnon branch that merges into a two-magnon
continuum in parts of the Brillouin zone40 (see also Sup-
plemental Material SM1). On the one hand the experi-
ment does not find any one-magnon branch, on the other
hand the existence of itinerant degrees of freedom in FeSe
complicates the issue beyond the reach of any available
exact statements. Short of a better approach, we use
Schwinger boson mean field theory (SBMFT)41 as a cal-
culational tool to describe the observed continuum. Not
only the SBMFT formulation was useful for early works
on the subject42,43 but it offers a handle for modelling the
dynamic structure factor guiding our ansatz. Although
fluctuations around mean-field will confine the spinons to
form a one-magnon branch in parts of the brilloin zone
in a pure spin model, it is to be expected that the contin-
uum may be still reasonably captured by the spinons. In-
deed numerics show40 the continuum in the spin-gapped
AKLT state in the bilinear-biquadratic chain gradually
approaches the spinon description known to exist at a
phase boundary.

Another unusual feature of the neutron spectrum9 is
the simultaneous presence of both (π, π) spin fluctua-
tions and (π, 0), (0, π) spin fluctuations (see Fig.2b).
The (π, π) spin fluctuations are anticipated upon melt-
ing a Neel ordered ground state. On the other hand, the
(π, 0)/(0, π) spin fluctuations are anticipated upon melt-
ing a stripe oriented along x or y directions respectively.
If we assume that apparent C4 symmetric INS momen-
tum distribution is a result of averaging over domains
with weights focused at (π, π) and (π, 0) or at (π, π) and
(0, π) (This is indeed consistent with the observed cross-
shaped spectrum around (π, π) (see Fig.2c): otherwise
the spectrum should be more rounded.), the INS spectra
invites us to postulate a QPM state in which both orders
are quantum melted. In particular we consider quantum
melting the classical spin configurations

Sr =
1

2
[(n1 + n2) cos(q1 · r) + (n1 − n2) cos(q2 · r)] ,

(2)
with the ordering wavevectors q1 = (π, 0)/(0, π) respec-
tively for the two nematic domains, q2 = (π, π), and the
spin space unit vectors n1,2. Such a state indeed obeys
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the condition S1 + S2 + S3 + S4 = 0 on a plaquette,
characteristic of critical spin states at J2 = J1/2.20

For spin 1, nematic QPMs overwhelm the phase di-
agram in early SBMFT model calculations through the
formation of an array of 1D AKLT chains rather than
a dimerized valence bond crystals.43,44 However none of
the known nematic QPMs states (see e.g.43,44 ) captures
the salient features of the observed neutron spectrum,9

specifically the simultaneous presence of both (π, π) and
(π, 0), (0, π) spin fluctuations. We will seek a new state
that is (1) a 2d generalization of AKLT chains and (2)
the quantum melted counterpart of the classical spin con-
figuration Eq.(2). In Schwinger boson representation,
each spin Si is represented by two bosonic operators biσ,

σ =↑, ↓ and the constraint
∑
σ b
†
iσbiσ = 2S. The spin

operator is then Si = 1
2

∑
σσ′ b

†
iσσσσ′biσ′ , with σ the

Pauli matrices. We can then expand Hij ≡ JijSi · Sj in

terms of the spin singlet operator A†ij = b†i↑b
†
j↓ − b

†
i↓b
†
j↑

to obtain Hij = −Jij 1
2A
†
ijAij + S2. We then mean-field

decompose Hij with the ansatz that sets 〈Ar,r±ŷ〉 6= 0
and 〈Ar,r±2x̂±ŷ〉 6= 0 up to fourth nearest neighbors, with
〈Ar,r′〉 = 0 for all other bonds (r, r′) (see Fig.3). Such an
ansatz state can be understood as a result of the compe-
tition between Neel and stripe states: we drop the bonds
that are favored by only one of the two states, and keep
only those favored by both states. In essence, this state
is the coupled AKLT chain state of Ref.17 with addi-
tional J4 bonds weakly connecting every other chain (see
Fig.1c).

Neel	order	 stripe	order	 nema/c	QPM	

=

FIG. 3: (Color online) A simple nematic QPM ansatz near
J2 = J1/2. Consider AFM bonds connecting the red spin with
other spins. In our ansatz the bonds with nonzero expecta-
tion values are chosen to be those bonds that have nonzero
expectation values in both the Neel and stripe ordered phases
(∩: set intersection).

We can then obtain from the SBMFT the dynamic spin
structure factor Sqω ≡ Im〈Sz(q, ω)Sz(−q, ω)〉 associated
with our ansatz. At T = 0, it is of the form45

Sq,ω ∼
∑
k

{cosh [2 (θk + θk+q̃)]− 1} δ (ωk + ωk+q̃ − |ω|) ,

(3)
where θk is the angle in the Bogoliubov transforma-
tion of SBMFT (see SM2 for explicit expression), and
q̃ = q− (π, π) arises because of a standard unitary trans-
formation we carried out on the B sublattice for sim-
plicity. The results summing over two nematic domains
are plotted in Fig. 2(d-f). They capture the basic fea-

tures of the neutron spectra: (1) The spectrum is gapped
(Fig. 2d), as a result of the absence of long range mag-
netic ordering. (2) Both (π, π) and (π, 0)/(0, π) spin fluc-
tuations are present (Fig. 2d, e). This can be simply un-
derstood from the corresponding classical spin configura-
tion Eq.(2), for which the elastic spectrum SqS−q con-
sists of two sharp peaks at (π, π) and (π, 0)/(0, π). (3)
The spectrum displays the novel feature of continuum
with the bounds exhibiting one-dimensional dispersion
(Fig. 2d).

A sharp prediction of our model is the dramatic sup-
pression of spectral weight around (qx, 0) in a detwinned
sample ((0, qy) for the other domain). This means at low
energies there are weights at say (π, π) and (π, 0), but
not at (0, π). By contrast, in an orbital order driven pic-
ture for nematic ordering, there is only a weak anisotropy
in the spin-structure factor with the spectral weight at
(π, π), (0, π) and (π, 0) of roughly the same magnitude
even in a single nematic domain.10,11 Such a distinction
has profound implications for pairing. When the de-
gree of anisotropy in the momentum distribution of the
spin spectra is mild, pairing interactions with different q-
wavevectors compete, leading to nodes.10,11 On the other
hand, the strong anisotropy in the spectral weight distri-
bution in our SBMFT ansatz quenches such competition
removing any need for a superconducting gap node.

We now turn to the itinerant degrees of freedom to
study nematicity and superconductivity. Their kinetic
energy is given by a tight-binding model:

Hc =
∑
k,αβ,ν

εµναβ(k)c†αµ(k)cβν(k), (4)

where c†αµ(k) creates an itinerant electron with momen-
tum k, spin µ and orbital index α. What matters for
pairing in the itinerant part are the low energy elec-
tronic states around the Fermi surface. The Fermi sur-
face of FeSe consists of two electron pockets around the
M points and one hole pocket around the Γ point.24–26

Following,6,46 we take a phenomenological approach to
expand the dispersion εµναβ(k) around the Fermi surface.
It is known experimentally that the spectral weight of
the low energy states are predominantly from dyz and dzx
around the Γ point, from dyz and dxy around (π, 0), from
dzx and dxy around (0, π). We consider the correspond-
ing intra- and inter-orbital hopping terms. Furthermore
we include on-site nematicity and spin-orbit coupling to
produce the band splitting that gives rise to a single hole
pocket around Γ. The resulting Fermi surface is shown
in Fig.4a, see SM3 for explicit parameters.

The itinerant electrons couple to the local moments via
the ferromagnetic Hund’s coupling29:

Hint = −
∑
i,α,µν

JαSi · c†iαµσµνciαν , (5)

where σ represents the vector of Pauli matrices, and
Jα > 0 denote the Hund’s couplings. Since the Hund’s
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couplings are determined by the overlap of the corre-
sponding wavefunctions, they are generally different for
different orbitals.

With such couplings, the proposed nematic QPM state
induces nematicity in the charge sector. We illustrate
the basic picture here using a simplified model. For in-
stance non-zero 〈Ar,r±ŷ〉 in the nematic QPM state gen-
erates an interaction among conduction electrons along
the y-direction, which drives bond-centered nematic or-

der with ϕc ≡ 〈c†r+x̂,αcr,α − c
†
r+ŷ,αcr,α〉 6= 0 below the

temperature at which the nematic QPM develops. The
observed nematic transition at Ts ∼ 90K8 is consistent
with this picture. Furthermore, ϕc linearly couples to
ϕo ≡ nzx−nyz

nzx+nyz
, where nzx,yz denote occupation of zx and

yz orbitals, and ϕs ≡ M2
x − M2

y , where M represents
the magnetic moment. These different measures of ne-
maticity are consistent with orbital imbalance observed
in ARPES24–26 (ϕo 6= 0) and the observed NMR reso-
nance line splitting47 (ϕs 6= 0).

(a) (b)

(c) (d)

FIG. 4: (Color online) (a): The Fermi surface. (b, c): The gap
symmetry function on different Fermi pockets for three-band
models with Jyz = Jzx = Jxy = 1 (b) and Jyz = Jzx = 1,
Jxy = 0.4 (c). (d): The gap function observed in the recent
STM measurements.48

Furthermore, the nematic spin fluctuations in the pro-
posed QPM state mediate pairing among the itinerant
electrons and the resulting gap structure can be deter-
mined via standard a mean field procedure (see SM4).
An immediate observation is that non-universal aspects
of the gap structure such as relative gap strength of each
pocket and the Tc are sensitive to strength of the Hund’s
couplings J ’s (see Fig. 4b,c). Nevertheless the gap func-
tions resulting from our model share the following generic
features: (1) The gap is generically nodeless as a result
of severe anisotropy of the spin fluctuations in the ne-

matic QPM state. In particular, the near absence of
spin fluctuations around say (0, π) for one nematic do-
main renders the determination of gap sign in different
pockets unfrustrated. In contrast, in the itinerant model
where (π, π), (π, 0) and (0, π) spin fluctuations are close
in magnitude they compete for deciding the sign struc-
ture of the gap causing nodal gap structures. (2) The gap
is deeply anisotropic due to the variation of orbital con-
tent around each Fermi pocket. The resulting nodeless
but very anisotropic gap structure explains the seemingly
contradictory experimental results of STM,49,50 penetra-
tion depth,50 thermal conductivity measurements,51 ob-
serving low energy excitations49,50 despite the evidence
of a full gap.48,51 (3) The gap changes sign from pocket
to pocket. This is consistent with the observation of
sharp spin resonance in the superconducting state,52 and
is a general feature of spin-fluctuation mediated pairing.
More specifically, our gap function is a combination of
d-wave as induced by (π, π) spin fluctuations and s± as
induced by (π, 0) spin fluctuations. We consider a single
nematic domain, where the pairing interaction concen-
trates around (π, qy). Two examples of the gap func-
tion (in arbitrary units) are shown in Fig.4b,c, where
Jxy = Jyz = Jzx and Jxy = 0.4Jyz = 0.4Jzx respectively.

Now we turn to the question of orbital dependence
of the Hund’s coupling. Fig. 4b,c shows the orbital de-
pendence of the Hund’s coupling can alter the relative
magnitude and anisotropy of gap functions at different
Fermi pockets (while the gap is predominantly d-wave in
Fig. 4b, d- and s-wave are at par in Fig. 4c). Although
the spectral weight of the spin fluctuation is mostly con-
centrated around (π, π), itinerant electrons may not fully
utilize the (π, π) fluctuation depending on the orbital de-
pendence of the Hund’s coupling. Since the Hund’s cou-
pling requires overlap of the wave-function between the
conduction electrons and local moments, the observed
imbalance of the weight between dxy orbitals compared
to dxz and dyz orbital imply suppression of Jxy com-
pared to Jxz and Jyz. Indeed, the gap function with
such orbital selective Hund’s coupling shows remarkable
resemblance to the gap structure observed by recent STM
measurements48 (see Fig.. 4 c,d). In Ref. Sprau et al. 48

the observed pocket specific gap anisotropy was inter-
preted as resulting from orbital-selective pairing of un-
known microscopic origin. In our model, such orbital se-
lective pairing arise from orbital selection in the Hund’s
coupling Jxy < Jyz = Jzx, reflecting much smaller weight
of dxy orbitals in the conduction electrons.53 This orbital
selective Hund’s coupling amplify the role of (π, 0) spin
fluctuation in pairing despite larger spectral weight at
(π, π), which is consistent with the observation of sharp
spin resonance at (π, 0).52

In conclusion, we propose a unified framework that
explains the basic phenomenology of FeSe. (1) Spin dy-
namics: we propose a new nematic QPM state that ex-
plains the observed inelastic neutron spectrum9 assuming
the observed INS is averaged over domains. (2) Nematic
transition: by coupling the nematic QPM to conduction
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electrons to form a spin-fermion model, we obtain a ne-
matic order parameter that explains the observed sharp
nematic transition (without magnetic ordering). (3) Un-
conventional superconductivity: employing orbital selec-
tivity, we obtain a fully-gapped but highly anisotropic
superconducting phase that agrees with the experiments.
The central assumption that neutron scattering is aver-
aging over domain walls could be tested in a detwinned
neutron experiment. Orbital selective Hund’s coupling
mechanisms for orbital selective pairing in bulk FeSe fur-
ther offers new insight regarding higher Tc observed in
mono-layer FeSe and K-doped FeSe. As we show in SM4,
larger Jxy that enables conduction electrons to utilize
(π, π) spin fluctuation with larger intensity and higher
characteristic frequency leads to higher transition tem-
perature (as high as 47K). Combined with the observa-
tion that spectral weight of the dxy orbitals in the con-
duction electrons is much higher in the higher Tc settings
of mono-layer FeSe and K-doped FeSe,53 it is conceivable
these systems make better use of already more prominent

(π, π) fluctuation to achieve higher Tc. Finally, although
we used SBMFT as a calculational crutch to capture the
spin wave continuum, the ultimate fate of spinons in this
spin-1 system coupled to itinerant electrons needs further
study. Interestingly, such a state with spinons coexisting
with conduction electrons would resemble the FL* state
first proposed in Refs.54,55 that has recently been revis-
ited using DMRG.56
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Brink, and B. Büchner, Nat Mater 14, 210 (2015), URL
http://dx.doi.org/10.1038/nmat4138.

48 P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Tau-
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Supplemental Material

SM1: Review of 1d S = 1 spin chain

FM

AFQ

Haldane

dimer
TB

AKLT

θ

FIG. 5: (Color online) Phase diagram of 1d S = 1 spin chains with bilinear and biquadratic interactions.57,58

FIG. 6: (Color online) Dynamic spin structure factor of Takhtajan-Babujian chain as obtained in Bethe Ansatz.39

We include here a brief review of the 1d S = 1 spin chains with bilinear and biquadratic interactions with an
emphasis on their dynamic spin spectrum. The Hamiltonian is

HS = J
∑
i

[
cos θ (Si · Si+1) + sin θ (Si · Si+1)

2
]
, (6)

with −π ≤ θ ≤ π. As shown in Fig.5, this model has a rich phase diagram (see57,58 and references therein): (1)
ferromagnetic phase for −π < θ < −3π/4 and π/2 < θ ≤ π, (2) dimerized phase for −3π/4 < θ < −π/4, (3)
gapped and topologically ordered Haldane phase for −π/4 < θ < π/4 (the AKLT state corresponds to θ = arctan 1

3 '
0.1024π), (4) gapless phase with antiferroquadrupolar (AFQ) correlations for π/4 < θ < π/2.57 The dimerized phase
and the Haldane phase are separated by a critical point, the Takhtajan-Babujian (TB) point.59,60 At the TB point,
the system possesses gapless spinon excitations. The spinon continuum is manifest in the dynamical spin structure

http://dx.doi.org/10.1038/nmat4302
http://dx.doi.org/10.1038/nmat4302
http://dx.doi.org/10.1038/nature13894
http://dx.doi.org/10.1038/nature13894


8

FIG. 7: (Color online) Dynamic spin structure factor of 1d S = 1 spin chains with the corresponding θ values as obtained in.40

factor (Fig.6) as obtained using algebraic Bethe ansatz-based method.39 As one moves away from the critical point
into the Haldane phase, the spinons get confined, and the elementary excitations are magnons. However one notes
that the magnons are strongly interacting: in addition to the one magnon branch, the two-magnon processes have
important contributions to the dynamic spin structure factor (see Fig.7).40 As one approaches the critical point, the
two-magnon excitations turn into two-sponon excitations.40

SM2: Schwinger boson mean field theory

We show here that our ansatz state is a self-consistent solution of the J1-J2-J3-J4 spin model (see Fig.1a of main
text for definition of J ’s). On a bipartite lattice, it is convenient to perform a unitary transformation by defining
aim ≡ bim on A sublattice, and aj↑ ≡ bj↓, aj↓ ≡ −bj↑ on B sublattice. The valence bond operator is then brought to

the simpler form A†ij =
∑
σ a
†
iσa
†
jσ. Modular a constant, the spin Hamiltonian HS =

∑
ij JijSi · Sj can be written in

terms of the valence bond operators as

HS = −1

2

∑
ij

JijA
†
ijAij . (7)

We then apply mean field theory to the bosonic Hamiltonian.41 Defining Qij = Jij〈Aij〉 ≡ Qδ, the quadratic part of
the mean field Hamiltonian reads:

H(MF)
S = λ

∑
iσ

a†iσaiσ +
1

2

∑
iδσ

Qδ

(
a†iσa

†
i+δ,σ + aiσai+δ,σ

)
. (8)

For a given mean field ansatz, the mean field Hamiltonian can be diagonalized by the Bogoliubov transformation

αkσ = cosh θkakσ − sinh θka
†
−kσ, (9)

with tanh (2θk) = −Qγk/λ. Here Qγk denotes the Fourier transform of Qδ: Qγk =
∑
δ e
−ik·δ. The resulting

Hamiltonian reads

H(MF)
S =

∑
kσ

ωk

(
α†kσαkσ +

1

2

)
, (10)

with the dispersion ωk =
√
λ2 − (Qγk)2. For the nematic PM state, up to fourth nearest neighbor, the nonvanishing

bonds are Qy and Q2x+y, and hence

Qγk = 2Qy cos ky + 4Q2x+y cos(2kx) cos(ky). (11)

The ansatz state is basically determined by the two dimensionless parameters: Qy/λ and Q2x+y/Qy. We have taken
Qy/λ = 0.38 and Q2x+y/Qy = 0.15 for the plot of spin structure factor in the main text (Fig.2).

Integrating out the bosonic fields, one obtains the free energy

F =
∑
δ

|Qδ|2

2Jδ
− 1

2
(2S + 1)λ+

1

β

∫
d2k

(2π)2
ln

[
2 sinh

(
1

2
βωk

)]
, (12)
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from which follow the self-consistency equations

S +
1

2
=

∫
d2k

(2π)2

λ

2ωk
, (13)

Qy
J1

=

∫
d2k

(2π)2

Qγk
2ωk

cos ky, (14)

Q2x+y

J4
=

∫
d2k

(2π)2

Qγk
2ωk

cos ky cos(2kx), (15)

at T = 0. The other bonds (Qx, Qx+y, Q2x, Q2y, Qx+2y) vanish self-consistently. More generally, taking into account
further neighbor bonds, the nematic QPM phase is characterized by 〈Aδ〉 6= 0, with

δ = 2mex + (2n+ 1)ey, (16)

in one nematic domain, where m,n are integers.
We then show that our ansatz state can indeed represent a QPM state. In SBMFT, long-range order occurs through

Bose-Einstein condensation (BEC) of the Schwinger bosons, and condensation gives rise to gapless spectrum due to
the resulting Goldstone mode. The QPM state corresponds to a solution of the self-consistency equations (Eqs.13-15)
with gapped spectrum, where there is no condensation of Schwinger bosons. We have numerically determined the
phase boundary between the nematic QPM and nematic ordered states in the parameter space expanded by S and
J4/J1 (see Fig.8). In particular, for S = 1/2, the nematic PM state exists in the region J4/J1 < 0.07. We note that in
the recent DMRG study of J1-J2-K1-K2 spin model, a nematic QPM state has been found to be stabilized between
the Neel and stripe ordered states.23 It would be interesting to check our ansatz state is the same as their state.

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.05 0.10 0.15 0.20 0.25

J4
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0.2
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0.8
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(π,π) + (π,0) order

FIG. 8: (Color online) Phase diagram of our ansatz state in SBMFT.

SM3: Itinerant part: three orbital model

For the itinerant part of the system, what matters for pairing are the low energy electronic states around the
Fermi pockets. We take a phenomenological approach to expand the dispersion around the Fermi pockets. Since it
is known experimentally that the spectral weight of the low energy states arises mainly from dyz, dzx, dxy orbitals,
we consider a band structure involving these three orbitals. Such orbital-projected band models have been studied
in.6,46 Consider first the Fermi pocket near the Γ point, a single hole pocket has been detected, with the dyz and
dzx orbitals dominating the spectral weight. We introduce a spinor ψTγ,k = (cyz,k↑,−czx,k↑, cyz,k↓,−czx,k↓), and the
kinetic energy part of the Hamiltonian is of the form

H0,Γ =
∑
k

ψ†γ,khΓ(k)ψΓ,k. (17)

The Hamiltonian includes the on-site energy, intra-orbital hopping, inter-orbital hopping. To get the right orbital
splitting, we include also the difference in the on-site energy for the two orbitals reflecting nematicity, and the spin-orbit
coupling.46 The result reads

hΓ(k) =

(
εΓ +

k2

2mΓ

)
τ0 ⊗ σ0 +

[
δεΓ + bk2 cos(2θk)

]
τ3 ⊗ σ0 + ck2 sin(2θk)τ1 ⊗ σ0 + λτ2 ⊗ σ3, (18)
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where τ and σ are Pauli matrices in orbital and spin space respectively, and k = (kx, ky) = k(cos θk, sin θk).
For the electron pocket near (π, 0), the dyz and dxy orbitals dominate the spectral weight. We introduce a spinor

ψTX,k = (cyz,k↑, cxy,k↑, cyz,k↓, cxy,k↓), and the kinetic energy part of the Hamiltonian is of the form

H0,X =
∑
k

ψ†X,khX(k)ψX,k, (19)

with

hX(k) =

[
ε1 +

k2

2m1
− a1k

2 cos(2θk)

]
τ0 + τ3

2
⊗σ0+

[
ε3 +

k2

2m3
− a3k

2 cos(2θk)

]
τ0 − τ3

2
⊗σ0+2vk sin θkτ

2⊗σ0. (20)

Here k is measured from (π, 0).
For the electron pocket near (0, π), the dzx and dxy orbitals dominate the spectral weight. We introduce a spinor

ψTY,k = (czx,k↑, cxy,k↑, czx,k↓, cxy,k↓), and the kinetic energy part of the Hamiltonian is of the form

H0,Y =
∑
k

ψ†Y,khY (k)ψY,k, (21)

with

hY (k) =

[
ε1 +

k2

2m1
+ a1k

2 cos(2θk)

]
τ0 + τ3

2
⊗σ0+

[
ε3 +

k2

2m3
+ a3k

2 cos(2θk)

]
τ0 − τ3

2
⊗σ0+2vk cos θkτ

2⊗σ0. (22)

Here k is measured from (0, π).
With a proper choice of the parameters, we can obtain a single hole pocket around Γ, a single electron pocket around

(π, 0), and a single electron pocket around (0, π) as shown in Fig.4a of main text. The corresponding parameters are:
εΓ = 14, δεΓ = 11, 1

2mΓ
= −350, b = −70, c = 120, λ = 9, ε1 = −20, ε3 = −60 1

2m1
= 75, 1

2m3
= 160, a1 = 100,

a3 = −120, v = −60.

SM4: Interaction and pairing

The dynamic spin fluctuations in the QPM affect the itinerant electrons. Since the spins have a gapped spectrum,
we can integrate them out to obtain an effective interaction for the itinerant electrons. The induced action reads

Sint = −1

2

∫ β

0

dτ
∑
α,α′

JαJα′χij(τ)siα(τ) · sjα′(0), (23)

with the itinerant electron spin density siα ≡
∑
µν c
†
iαµσµνciαν , and the local moment spin correlation function

χij(τ) ≡ 〈TτSai (τ)Saj (0)〉. The induced interaction is highly anisotropic, and the dominant interaction term is the

nearest-neighbor interaction (say along the y-direction): J2
Hχc

†
rασ

a
αβcrβc

†
r+ŷ,α′σaα′β′cr+ŷ,β′ . This interaction results

in a phase transition to a nematic state with order parameter 〈c†r+ŷ,αcr,α〉 6= 0, or more generally, ϕc ≡ 〈c†r+x̂,αcr,α−
c†r+ŷ,αcr,α〉 6= 0.

Furthermore, the induced interaction leads to pairing among the itinerant electrons. Since the spin fluctuations are
antiferromagnetic, one expects pairing in the spin singlet channel. We then mean field decompose the induced interac-

tion into spin singlet pairing channel with the corresponding pair operator h†αα′(k) = 1√
2

(
c†kα↑c

†
−kα′↓ − c

†
kα↓c

†
−kα′↑

)
.

Due to the special form of spin susceptibility and band structure in FeSe, the pairing problem is largely simplified.
The spin fluctuations enter the pairing problem through the spin susceptibility χ(q) ≡ χ(q,Ωn = 0), which can be
obtained from the dynamic spin structure factor via χ(q) = −

∫
dωSq,ω/ω. The special form of χ(q) in FeSe (see

Fig. 9) results in only inter-band pairing correlation among the three Fermi pockets. Furthermore, since Hund’s
coupling is diagonal in orbital space, there are only pairing correlations between the same orbitals: in orbital basis,
the pairing interaction is of the form Hpair ∼ J2

αχ(k − k′)h†αα(k)hαα(k′).
Pairing occurs near the Fermi surface, which is naturally expressed in the band basis. We then transform from

the orbital basis to the band basis: c†kαµ =
∑
a η
∗
αaµ(k)d†kaµ with band index a. Note that since the spin-orbit
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FIG. 9: (Color online) The spin susceptibility χ(q) ≡ χ(q,Ωn = 0) in a single nematic domains.

coupling here is in the σ3 channel, different spins do not mix. The pair operator in the band basis is h†a(k) =
1√
2

(
d†ka↑d

†
−ka↓ − d

†
ka↓d

†
−ka↑

)
. Omitting the frequency dependence, the pairing Hamiltonian is of the form

Hpair =
∑
kk′ab

Γab(k,k
′)h†a(k)hb(k

′), (24)

with the projected pairing interaction Γab(k,k
′) = 1

2

∑
α J

2
αχ(k−k′)M∗αa(k)Mαb(k

′). The orbital content is encoded
in the form factor Mαa(k) = ηαa↑(k)ηαa↓(−k). The gap function is then defined as ∆a(k) =

∑
k′b Γab(k,k

′)〈hb(k′)〉.
The gap symmetry function gi(k) ∝ ∆a(k) on the Fermi surface is determined by the eigen equation

−
∑
j

∮
FSj

dk′‖

2πvF (k′)
Γij(k,k

′)gj(k
′) = λgi(k), (25)

where k‖ denotes momentum along the Fermi surface FSj , and vF (k) = |∇Ea(k)| represents the Fermi velocity.
We can then solve the above eigen equation to find the leading eigenvalue and the corresponding eigenvector, which
determines the resulting gap structure within a single nematic domain. The inputs are (1) itinerant electron band
structure encoded in εµναβ(k) (2) local moment spin susceptibility χ(q), and (3) Hund’s couplings Jα.

We show here more concretely how (π, π) spin fluctuation mediated pairing enhances the superconducting Tc. We
first estimate the value of λ in bulk FeSe from the observed Tc. Since Fermi energy is small compared to spin fluctuation
scale (so called antiadiabatic limit), Fermi energy acts as cutoff in the Tc equation: Tc ∼ EF e

−1/λ.61,62 With Tc ∼ 8
K, EF ∼ 10 meV,63 we obtain λ ∼ 0.37. In bulk FeSe, pairing occurs predominantly among dyz orbitals as mediated
by (π, 0) spin fluctuations, while (π, π) spin fluctuation mediated pairing among dxy orbitals is largely suppressed.
This corresponds to taking (Jxy, Jzx, Jyz) ∼ (0, 1, 1). (Note that due to the near absence of (0, π) spin fluctuations,
pairing among dzx orbitals is suppressed for any coupling. So we just set Jzx = 1.) When pairing is predominantly
among dxy orbitals, we have (Jxy, Jzx, Jyz) ∼ (1, 1, 0). We have obtained the resulting eigenvalue λ′ = 2.98λ, which
gives Tc ∼ 47 K. Hence (π, π) spin fluctuation mediated pairing is indeed able to account for the much higher Tc in
heavily doped FeSe (Tc ∼ 48 K),64 and a large part of the Tc increase in monolayer FeSe (Tc ∼ 50− 64 K).65
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