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Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice
structures for this class of unconventional superconductors. We discuss how the order parameter
symmetry can give rise to U(1)×U(1) symmetry in the same sense as in spinor condensates, making
half-quantum vortices (HQVs) topologically stable.We then calculate the vortex lattice structure of
HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and
Meissner screening, all absent in spinor condensates. Finally, we consider how spin.orbit coupling
leads to a breakdown of the U(1)×U(1) symmetry in free energy and whether the HQV lattice
survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in
the context of NaxCoO2 ·yH2O and Bechgaard salts, as well as the better known and more complex
model for Sr2RuO4.

I. INTRODUCTION

A half quantum vortices (HQV) with vorticity h/4e,
which is half that of usual Abrikosov vortex with vor-
ticity Φ0 ≡ h/2e, presents an exciting example of frac-
tionalized topological defects. Quantization of collective
topological defects provides clear cut access to the na-
ture of the ground state. For instance, the vorticity h/2e
of Abrikosov vortex in a type II superconductor clearly
shows that the circulation associated with the vortex is
that of charge 2e Cooper pairs. Since the vorticity in a
condensate is determined by the requirement of single-
valuedness of the order parameter describing the con-
densate, “fractionalization of vorticity” is possible with
a multi-component order parameter when different com-
ponents are allowed to wind separately. For instance,
in a triplet superconductor, the additional Cooper pair
spin degree of freedom can be free to rotate in plane1,2,3

giving rise to additional U(1) symmetry and an associ-
ated spin winding number; cases where vortex fraction-
alization is due to the U(1)×U(1) symmetry of different
physical origin has also been studied4. Hence observation
of fractionalization of vortices can serve as an indicator of
the structure of the order parameter in a given conden-
sate. In addition, the recent proposals predicting non-
Abelian fractional statistics for the composite of a HQV
and the Majorana fermions bound at its core in the chiral
triplet superconductors brought in recent rise in the at-
tention and interest to the possibility of HQV’s in triplet
superconductors5,6,7,8. This type of non-Abelian statis-
tics was first studied for quasiholes in the spin-polarized
ν = 5/2 quantum Hall state9,10. Therefore, if we want
to obtain the same statistics for vortices in a spinful su-
perconductor, the vortices should be HQVs so that there
would be phase winding only for a single component.

However, while there are a number of candidate
triplet superconductors such as the single layer ruthen-
ate Sr2RuO411,12, the cobaltate NaxCoO2 · yH2O13 and
organic superconductors14, HQV’s have never been ob-
served in bulk systems, in line with the energetic stability

issues raised by two of us in Ref. 3. It was pointed out
in Ref. 3 due to the absence of screening for the spin su-
percurrent circulation required for HQV in triplet super-
conductors, HQV’s can be energetically unstable in bulk
samples towards combining into full Abrikosov vortices
despite their advantage in magnetic energy. Related con-
siderations have appeared in the context of spin-triplet
superconductivity in UPt3 by Zhitomirsky15.

The main motivation of this work is to investigate the
possibility of using high enough fields to generate a HQV
lattice in triplet superconductors where the vortex lat-
tice serves two purposes at once: 1) stabilizing HQV’s
at finite separation 2) providing an unambiguous signa-
ture of its formation (halving of the vortex lattice unit
cell). Experiments have already determined the vortex
lattice structure successfully at low fields in Sr2RuO4

16,17

and the observed square lattice geometry was consistent
with the theoretical prediction by one of the present au-
thors based on a chiral triplet order parameter in Ref. 18.
However, Ref. 18 considered the limit of strong spin-
orbit coupling, which leads to vortex lattices of full quan-
tum Abrikosov vortices. Recently, measurements of the
Knight shift for the field along the c-axis19 as well as
ARPES data20,21 indicate that that spin-orbit coupling
is perhaps not so strong. Therefore, in this paper, we
extend the studies of Ref. 18 to allow for weak spin-
orbit coupling, leading to the possibility of HQV lattices
for fields along the c-axis. Additionally, the organic su-
perconductor (TMTSF)2ClO4 naturally has weak spin-
orbit coupling and Knight shift measurements provide
evidence for a spin-triplet state at high magnetic fields14,
which is precisely the situation we consider here. We also
provide an analysis of this case and the closely related
case for cobaltate spin-triplet superconductors13.

In this paper, we study the energetics of different vor-
tex lattice configurations. The key additional physical
ingredient is the U(1) spin-rotational invariance of the
Cooper pairs that arises in a magnetic field. This gener-
ically leads to two different species of fractional vor-
tices whose fractional fluxes sum to Φ0. When stable,
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these fractional vortices form interlacing lattices analo-
gous to vortex.antivortex lattice configurations proposed
by Refs. Gabay and Kapitulnik22, Zhang23 in the con-
text of a two-dimensional (2D) superfluid and the con-
figuration in two-component Bose condensates proposed
by Ref. Mueller and Ho24.

The rest of the paper consists of the following. In sec-
tion II, we give a pedagogical introduction to the symme-
try properties of triplet OP. In particular, we will show
how U(1)×U(1) symmetry can arise in the OP of such
systems. In section III we discuss the form of Gibbs
free energy that is allowed by various symmetries in the
problem when spin-orbit coupling is not included. In
section IV we provide the general theoretical framework
for the vortex lattice phases. In section V we show that
the lowest Landau level solution often provides an ad-
equate description and we discuss this solution for the
lattice of HQV’s. In section VI we consider the effect
of U(1)×U(1) symmetry breaking driven by spin-orbit
coupling. In section VII we lay out predictions for how
to detect the proposed HQV lattice structures and we
conclude with a summary and outlook in section VIII.

II. THE TRIPLET ORDER PARAMETER

The order parameter of a triplet superconductor takes
a matrix form in the spin space12,25:

∆̂(k)=
[

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

]
≡
[
−dx + idy dz

dz dx + idy

]
,

(2.1)
where the spin quantization axis is along the z direction.
The triplet pairing requires ∆↑↓=∆↓↑ and a set of three
complex functions of k, namely (dx(k), dy(k), dz(k)),
were introduced to parameterize the gap matrix. When
the three functions are collectively represented using a
vector notation, the “unit vector” d̂(k) represents the
symmetry direction (zero projection direction) with re-
spect to the rotation of Cooper pair spin. In the pres-
ence of the sufficiently high field along the c-axis, Zeeman
splitting between electrons with opposite spins prohibits
pairing, leading to ∆↑↓ = ∆↓↑ = 0. In the d-vector nota-
tion, this implies that the d-vector lies in-plane (perpen-
dicular to the applied field). In the rest of the paper, we
assume that the field is sufficiently large so that this is
the case. In the context of strontium ruthenate, our re-
sults apply for the field along the c-axis (this is also true
for the cobaltates when we are discussing spin-orbit cou-
pling in hexagonal systems). For organic and cobaltate
superconductors, our results apply for the field along any
two-fold or higher symmetry axis of symmetry.

For non-chiral triplet order parameter symmetry,
which is expected of the cobaltate NaxCoO2 ·yH2O13 and
organic superconductors14, the spin pairing gap matrix
takes the form

∆̂(k) = f(k)
[

∆↑↑ 0
0 ∆↓↓

]
(2.2)

where the function f(k) depends on the specific odd
angular momentum channel. The key simplifying fea-
ture is the the orbital dependence is described by a one-
dimensional representation encoded by f(k). There has
been suggestions that the cobaltate NaxCoO2 · yH2O
has a spin-triplet pairing through f -wave channel13, al-
though data from the Knight shift experiments remain
controversial26,27. In this case a common choice is f(k) =
kx(k2

x − 3k2
y). However, the precise form of f(k) is not

needed for our results. For the organic superconductor
(TMTSF)2ClO4, there is a strong case that the system
becomes a triplet superconductor under sufficient field
H &20kOe. In this case, there are many proposals for
f(k). However, again, the specific form is not needed for
our results.

For chiral order parameter symmetry expected of the
Sr2RuO4, with d in the basal plane and no spin-orbit
coupling, the order parameter has four complex degrees
of freedom:

∆̂(k) =
∑
σ=±

f̃(kσ, kz)
[

∆↑↑,σ 0
0 ∆↓↓,σ

]
, (2.3)

where the function f̃ , like the non-chiral case discussed
above, depends on the specific odd angular momentum
channel and kσ = kx + iσky. This is equivalent to

d(k) = ∆+d̂+ exp(inϕk̂) + ∆−d̂− exp(−inϕk̂), (2.4)

where n is an integer (n = 1 for p-wave, n = 3 for f -
wave) and ϕk̂ is the azimuthal angle associated with a
unit vector k̂ in the 2D plane (assuming quasi-2D setting
with the angular momentum along the c-axis: l̂ = ẑ).
Although ∆− = 0 for homogeneous chiral superconduc-
tor, we will show that ∆− 6= 0 often plays an important
role in describing the vortex lattice structure of chiral
superconductor.

Eqs.(2.2) and (2.4) clearly shows that under these cir-
cumstances, the order parameter symmetry takes the
U(1)×U(1) form, which can allow for HQV’s with h/4e
vorticity associated with π orbital phase winding and π
d-vector winding.

III. THE GIBBS FREE ENERGY

In order to identify stable vortex type and the lattice
structure itself, we start with the Gibbs free energy in-
cluding all the terms allowed by symmetry up to quartic
order. As usual, the quartic terms determine the vortex
lattice structure. Due to additional spin degrees of free-
dom, the full expression for the Gibbs free energy involves
a number of additional terms compared to singlet super-
conductor case and it is instructive to consider different
contributions separately:

f = fmag + f
(2)
0 + f

(2)
Z + f

(2)
in + f

(2)
SO + f

(4)
hom + f

(4)
in . (3.1)
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where fmag = h2/8π−hH/4π is the magnetic energy (the
field h is the sum of the external field H and the screening
field), the superscript (2) indicates terms quadratic in OP
and (4) quartic in OP

Other than the conventional quadratic term f
(2)
0 :

f
(2)
0 = −α

∑
i

|∆i|2 (3.2)

the remaining quadratic terms in Eq.(3.1) are conse-
quences of additional spin degree of freedom for the
triplet superconductors. The Zeeman coupling term

f
(2)
Z = −κ̃h(|∆↑↑|2 − |∆↓↓|2), (3.3)

plays an important role for the HQV vortex lattice by
introducing a slight spin-polarization. This slight spin-
polarization gives rise to two phase transitions as in the
case of the A1/A2 phase of 3He28,29. The inhomogeneous
part of the quadratic terms f (2)

in are of the form

Kij;kl(Di∆k)(Dj∆l)∗ + c.c., (3.4)

where Di = ∇i + (2πi/Φ0)Ai. For these terms, we re-
quire rotational invariance up to the lattice symmetry
with respect to orbital degrees of freedom only, which
means that we require invariance with respect to rotat-
ing Di’s and the orbital component of ∆i’s. The complex
structure of f (2)

in can result in the condensate wave func-
tion of a different form than that of conventional SC.
f

(2)
SO is the quadratic spin-orbit coupling term assuming

the spin-orbit coupling to be small and is discussed in
Sec. VI. In the presence of spin-orbit coupling the free
energy have to be invariant under the combined discrete
rotation of the orbital and spin degree of freedom spe-
cific for the given lattice symmetry. For lattices with
orthogonal or tetragonal symmetry, spin-orbit coupling
may reduce the symmetry of the Gibbs free energy and
tend to suppress HQV formation by introducing a length
scale beyond which the HQV’s cannot exist (this length
scale diverges as the spin-orbit coupling vanishes). This
implies that the vortex lattice spacing must be less than
this length scale for the HQV lattice to appear. How-
ever, we show that for spin-triplet hexagonal materials
(specifically the two-dimensional Γ−6 and Γ−5 representa-
tions in the notation of Sigrist and Ueda25), even large
spin-orbit coupling still allows for the existence of a frac-
tional vortex lattice. This consideration may apply to
NaxCoO2·yH2O.

Among the quartic terms, f (4)
hom represents the usual

set of homogeneous terms. As is shown in Appendix A,
certain quartic terms vanish in the weak-coupling theory.
The terms that vanish are those that lift the energy de-
generacy between the full quantum vortex (QV) and the
HQV lattice. For this reason, we also include the inho-
mogeneous quartic term f

(4)
in . This term accounts for the

difference between the spin phase stiffness ρsp and the
overall phase stiffness ρs. Not only does this difference

play an important role in the stability of isolated HQV’s
as it was shown in Ref. 3 it plays the role of tuning pa-
rameter for the vortex lattice structure.

With multiple systems in mind, we consider contribu-
tions to the Gibbs free energy specific for non-chiral and
chiral superconductors respectively.

A. Non-chiral Triplet Superconductor

As mentioned earlier, here we assume the orbital de-
pendence of the gap function to be the same for all spin-
triplet components. Formally, this means that the or-
bital degree of freedom belongs to a one-dimensional ir-
reducible representation of the point group. We apply
our analysis to materials that have orthorhombic, tetrag-
onal, or hexagonal point groups. One relevant example is
a non-chiral triplet f -wave superconductor with hexag-
onal symmetry, which has been proposed in the con-
text of the the cobaltates NaxCoO2 · yH2O; in this case
f(k) = kx(k2

x − 3k2
y) from Eq.(2.2). When the d-vector

lies in the xy plane, the inclusion of spin-orbit coupling
implies that formally this order parameter belongs to the
Γ−6 representation of the hexagonal point group (the con-
sequences of spin-orbit coupling for this representation is
discussed in more detail in Section VI).

With the in-plane spin rotational invariance, the rele-
vant free energy within the assumptions stated above is
given by

f
(2)
in =

∑
i=x,y,z

Ki(|Di∆↑↑|2 + |Di∆↓↓|2), (3.5)

f
(4)
hom = β1(

∑
i

|∆i|2)2 + β2|∆↑↑|2|∆↓↓|2, (3.6)

f
(4)
in = γ[∆∗↑↑∆↓↓(D⊥∆↑↑)·(D⊥∆↓↓)∗ + c.c], (3.7)

For tetragonal and hexagonal point groups Kx = Ky

while for orthorhombic point groups, Kx 6= Ky. For the
high field limit we are considering, it is possible to re-
scale lengths in two directions perpendicular to applied
field such that K̃i = K̃j for i 6= j (where K̃i refers to
the new coefficient in the re-scaled coordinates). We will
therefore ignore the difference between the Ki and as-
sume that for orthorhombic point groups we are work-
ing in re-scaled co-ordinates. The term f

(4)
in is not the

most general such term allowed by symmetry. However,
it is this term that allows the GL theory to give the
same physics as in Ref. 3. Indeed, one can gain more
insight into the vortex lattice solutions that minimizes
Eq.(3.2) and Eqs.(3.6-3.7) by relating the coefficient of
the inhomogeneous quartic term γ to the stiffness ratio
ρsp < ρs which controls the energetic stability of a pair
of HQV’s3. Within the London approximation, the gra-
dient terms in Eq.(3.5) and Eq.(3.7) amounts to phase
bending energy which will be proportional to (ρs + ρsp)
and (ρs − ρsp) respectively for ∆↑↑ and |∆↓↓|. Combin-
ing Eq.(3.5) and Eq.(3.7) with the homogeneous solution

3



|∆↑↑|2 = |∆↓↓|2 = α/(β1 − β2), we obtain the following
relation between γ and ρsp/ρs:

γ =
K1(β1 − β2)

α

1− ρsp/ρs
1 + ρsp/ρs

. (3.8)

Hence γ > 0 would imply stability of HQV’s and double
transitions into two possible vortex phases: a lattice of
ordinary Abrikosov vortices and a lattice of HQV’s. This
transition is determined by the β2 term of Eq. (3.6) and
the γ term of Eq. (3.7).

B. Chiral Triplet Superconductor

With the ruthenate Sr2RuO4 in mind, we consider a
chiral triplet p-wave superconductor with square symme-
try for which f̃(kσ) = kx + iσky in the Eq.(2.3) with

∆̂(k) =
∑
σ=±

(kx + iσky)
[

∆↑↑,σ 0
0 ∆↓↓,σ

]
, (3.9)

where ∆s,σ (s =↑↑, ↓↓ and σ = ±) form expansion param-
eters for the Gibbs free energy. In terms of the d-vector
notation d ≡ x̂(ηxxkx + ηxyky) + ŷ(ηyxkx + ηyyky),

∆↑↑,+ = − (ηxx − iηxy − iηyx − ηyy)/2,
∆↑↑,− = − (ηxx + iηxy − iηyx + ηyy)/2,
∆↓↓,+ = (ηxx − iηxy + iηyx + ηyy)/2,
∆↓↓,− = (ηxx + iηxy + iηyx − ηyy)/2. (3.10)

Formally, without spin-orbit coupling, this order pa-
rameter is a direct product of a Eu orbital represen-
tation of the tetragonal point group and the in-plane
vector representation for spin rotations. When spin-
orbit is included the order parameter contains the four
different one-dimensional representations of the tetrag-
onal point group. In the case without spin-orbit cou-
pling, the relevant free energy for this representation can
be constructed using the known free energy for the Eu
representation25, we list below f

(2)
in , f (4)

hom and f
(4)
in . Be-

fore listing f (2)
in , we note that this free energy term should

respect the C4 symmetry on the xy plane only for the or-
bital degrees of freedom:

(Dx, Dy,∆s,+,∆s,−)→ (Dy,−Dx, i∆s,+,−i∆s,−).
(3.11)

However, for simplicity, we consider cylindrical symme-
try in the orbital degrees of freedom, this does not signif-
icantly alter the arguments below. This symmetry gives
us f (2)

in =
∑
s f

(2,s)
in where

f
(2,s)
in = K1(|D∆s,+|2 + |D∆s,−|2)

+ K2[{(Dx∆s,+)(Dx∆s,−)∗−(Dy∆s,+)(Dy∆s,−)∗}/2
+ {(Dx∆s,−)(Dx∆s,+)∗−(Dy∆s,−)(Dy∆s,+)∗}/2
+ i{(Dx∆s,−)(Dy∆s,+)∗+(Dy∆s,−)(Dx∆s,+)∗}/2
− i{(Dx∆s,+)(Dy∆s,−)∗+(Dy∆s,+)(Dx∆s,−)∗}/2]

+ K4(|Dz∆s,+|2 + |Dz∆s,−|2). (3.12)

In addition, the following term is also allowed by sym-
metry

δK
2π
Φ0
h
∑
s

(−|∆s+|2 + |∆s−|2), (3.13)

and it stabilizes this in-plane chiral phase for strong
enough magnetic field (note the similarity to the Zee-
man term for the condensate spin degrees of freedom).
As for the homogeneous quartic terms,

f
(4)
hom =

∑
s

[β1(|∆s+|4 + |∆s−|4)/2 + β′1|∆s+|2|∆s−|2]

−
∑
σ=±

(β2|∆↑↑,σ|2|∆↓↓,σ|2 + β′2|∆↑↑,σ|2|∆↓↓,−σ|2)

− β3[(∆↑↑,+∆↓↓,−)(∆↑↑,−∆↓↓,+)∗ + c.c.]. (3.14)

β2, β′2 and β3 terms originate from interaction between
spin up-up pairs and down-down pairs. Again, for sim-
plicity, we written the free energy in the limit of a cylin-
drical Fermi surface. Lastly, we have

f
(4)
in = γ

∑
σ=±

[∆∗↑↑,σ∆↓↓,σ(D∆↑↑,σ) · (D∆∗↓↓,σ) + c.c.]

+ γ′
∑
σ=±

[∆∗↑↑,σ∆↓↓,−σ(D∆↑↑,σ) · (D∆∗↓↓,−σ) + c.c.].

(3.15)

Note that the form of Eq. (3.15) is consistent with the
form of the interaction terms in Eq. (3.14). Again, this
is not the most general term allowed by symmetry, but
it is the minimal term that captures the physics in the
London limit described in Ref. 3.

IV. DETERMINING THE VORTEX LATTICE
STRUCTURE - GENERAL CONSIDERATIONS

We consider the vortex lattice phases near the upper
critical field to map out the stability condition for HQV
lattice phases. As usual, the first step towards determin-
ing the vortex lattice structure is to identify the eigen-
states of the linearized Ginzburg-Landau (GL) equations.
In order to obtain a linearized GL equation we take a
variation of the quadratic terms in the free energy, for
example:

f
(2)
0 + f

(2)
in + f

(2)
Z = −α

∑
j

|∆j |2 − κ̃h(|∆↑↑|2 − |∆↓↓|2)

+ [Kjk;lm(Dj∆l)(Dk∆m)∗ + c.c.]
(4.1)

with respect to one component of the order parameter
∆∗s. This gives an equation of the form

α∆s = K∗kl;ss′DkDl∆′s − κ̃H∆s (4.2)

(note that we are ignoring the difference between h and
H in this approximation). Since the gradient terms in

4



Eq.(4.2) cannot in general be reduced into a D2
x + D2

y

form, the lowest Landau level wave functions are not suf-
ficient for calculating the condensate wave function in
general. However, the solution of this equation can still
be expressed in terms of Landau level wave functions:

φn(r) = [2nπ1/2(n!)]−1/2

×
∑
m

qme
ikmx

′
e−(y′−km)2/2Hn(y′ − km),

(4.3)

where Hn is the Hermite polynomial of nth order, x′
and y′ are x, y coordinates in the unit of the mag-
netic length l = (Φ0/2πH)1/2. This is because Di’s
can be expressed as a linear combination of the raising
and lowering operators of the Landau levels Π±, since
Π± = l(Dx ± iDy)/

√
2.

This wave function describes a vortex lattice when
|φn(r)| is periodic in the lattice vectors a1 = al(1, 0) and
a2 = bl(cos θ, sin θ), and φn(r) vanish at m1a1 + m2a1

when m1 and m2 are integers. This requires

km = 2π(m− 1/2)/a = (m− 1/2)
√

2πσ

qm = eiπm(ς+1−mς), (4.4)

where σ = (b/a) sin θ and ς = (b/a) cos θ. Note that we
used the flux quantization condition ab sin θ = 2π. For
a lattice of HQV’s we need to consider a second lattice
that is translated by lτ = l(τx, τy) with respect to the
first lattice. For the wave function of this lattice, we can
use30

φ̃n(r) = eiτyxφn(r− τ ), (4.5)

the phase factor being chosen so that Π−φ̃0(r) = 0. This
latter condition ensures that the translated eigenstates
have the same gauge as the untranslated eigenstates.

The formalism considered here gives us not only the
energy due to interaction between vortices but also the
core energy of vortices as well. This is because our vortex
lattice wave function gives full description of the core
regions. From the linearized GL equation we use here,
a full quantum vortex is merely two HQV’s of opposite
spins coinciding at a same point. This means that the full
quantum vortex core energy, if we ignore the cross term
between two spin components in f

(4)
hom, is approximately

twice the core energy of a HQV. If the HQV core energy
is actually larger than this, that would make stabilization
of the HQV more difficult, i.e., the largest allowed value
for ρsp/ρs for the HQV lattice would be smaller than
what we obtain through the formalism used here.

The lattice structure can be determined by finding
(σ, ς, τ ) that minimize the free energy expectation value.
For this, we first set the amplitude of OP to minimize
the energy for given (σ, ς, τ ) (the amplitude depends on
Hc2 −H), and then compare energy for different values
of (σ, ς, τ ). To determine these structures we will need
to take the spatial integral of the product of four Landau
level wavefunctions. We have computed these integrals
in the Appendix C.

V. LOWEST LANDAU LEVEL SOLUTION

In the bulk of this section we provide detailed analy-
sis of the lowest Landau level solution for the non-chiral
triplet superconductors and briefly comment on the chi-
ral case in subsection V C. In this case the relevant free
energy (for orthorhombic, tetragonal, and hexagonal ma-
terials) is

f =
∑

s=↑↑,↓↓

−α|∆s|2 + β1|∆s|4/2 +

 ∑
i=x,y,z

Ki|Di∆s|2


− β2|∆↑↑|2|∆↓↓|2 − κ̃h(|∆↑↑|2 − |∆↓↓|2)

+ γ[∆∗↑↑∆↓↓(D∆↑↑)·(D∆↑↑)∗ + c.c] +
h2

8π
− Hh

4π
.

(5.1)

As mentioned before, we assume that we have re-scaled
lengths so that we can take Kz = Kx = Ky = K. First
look at the upper critical field problem. The linearized
GL equation is:

αl2

K
∆s =

(
1 + 2Π+Π− − s

Hl2

K
κ̃

)
∆s. (5.2)

The largest Hc2 occurs when the ∆s are in the lowest
Landau level. This leads to two possible values for the
upper critical field,

H±c2 =
αΦ0

2π(K ±Hl2κ̃)
(5.3)

We assume that κ̃ > 0 so that ∆↑↑ has the larger Hc2.
We do not assume that the splitting between these two
critical fields is large since it is given by the small Zeeman
term κ̃.

Now consider the expectation value of f in terms of the
Landau level wave functions. Applying Eq. (4.2) to the
first two terms of Eq. (5.1) gives the lowest Landau level
solutions ∆↑↑ = C↑↑φ0 and ∆↓↓ = C↓↓e

i2αφ̃0. Inserting
this solution as determined at H = Hc2 gives

〈f〉 = −1
c
〈j · δA〉+ β1〈|φ0|4〉(C4

↑↑ + C4
↓↓)/2

+
[

2γ
l2

(〈|φ0|2|φ̃0|2〉−〈|φ0|2|φ̃1|2〉)− β2〈|φ0|2|φ̃0|2〉
]
C2
↑↑C

2
↓↓

+
〈h2
s〉

8π
− H2

8π
+ α

[
1− K +Hc2l

2κ̃

K −Hc2l2κ̃

]
C2
↓↓, (5.4)

where j is the supercurrent, δA is deviation of the vector
potential from what we would have for the h = Hc2, and
hs is the screening field of superconductor. Note that in
this approximation j is calculated solely from quadratic
terms, ignoring γ terms, and by the Maxwell equation
∇× hs = 4πj/c. More specifically

j = 2eK[∆∗↑↑(D∆↑↑) + ∆∗↓↓(D∆↓↓) + c.c]

−cκ̃∇× ẑ(|∆↑↑|2 − |∆↓↓|2) (5.5)
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Since ∇ × δA = ẑ(hs + H − Hc2) and, from Maxwell’s
equations, ∇×hs = 4πj/c, partial integration leads to31

1
c
〈j · δA〉 =

1
4π
〈hs · (hs +H − ẑHc2)〉

=
〈h2
s〉

4π
+
Hc2 −H

4π
〈hs〉. (5.6)

Meanwhile, when we calculate the expectation value of
γ, we set h = Hc2. This leads to the free energy of

〈f〉 = −Hc2−H
4π

〈hs〉 −
〈h2
s〉

8π
− H2

8π

+ α

[
1− K +Hc2l

2κ̃

K −Hc2l2κ̃

]
C2
↓↓ +

β

2
〈|φ0|4〉(C4

↑↑ + C4
↓↓)

+
[

2γ
l2

(〈|φ0|2|φ̃0|2〉−〈|φ0|2|φ̃1|2〉)− β2〈|φ0|2|φ̃0|2〉
]
C2
↑↑C

2
↓↓

≡ −H
2

8π
+ 〈f̃〉. (5.7)

The screening field hs can be calculated by assuming
|∆̂| ∝ (Hc2 −H)1/2 near the second order phase transi-
tion at H = Hc2. Here we will deal only with O(|∆̂|4)
(or equivalently, O(1−H/Hc2)2) and ignore higher order
terms. This allows us to calculate j, and consequently
hs, solely from quadratic terms. In the lowest Landau
level, this yields the screening field:

hs =
8π2K

Φ0
(|∆↑↑|2 + |∆↓↓|2)− 4πκ̃(|∆↑↑|2 − |∆↓↓|2)

=
(

8π2K

Φ0
−4πκ̃

)
C2
↑↑|φ0|2+

(
8π2K

Φ0
+4πκ̃

)
C2
↓↓|φ̃0|2.

(5.8)

Inserting Eq. (5.8) into Eq. (5.7), the free energy takes
the following form:

〈f̃〉 = −α̃1C
2
↑↑− α̃2C

2
↓↓+ β̃1C

4
↑↑+ β̃2C

4
↓↓+ β̃3C

2
↑↑C

2
↓↓ (5.9)

with terms quadratic or quartic in C↑↑ and C↓↓ with co-
efficients that are independent in general (we will further
specify these coefficients is the next two subsections). In
the absence of screening fields, Zeeman-fields and the
term proportional to γ, the form of the free energy in
Eq. (5.7) is similar to that examined in Ref. 24 in the
context of two-component Bose condensates (spin-half
spinor condensate).In that case, the vortex lattice struc-
ture is solely determined by the competition between the
β1 and β2 terms of Eq. (5.1); the β1 term determines the
interaction energy within each vortex lattices, and the β1

term the interaction energy between two fractional vor-
tex species each forming lattices. Specifically, the quar-
tic term −β2〈|φ0|2|φ̃|2〉C2

↑↑C
2
↓↓ determines the stability of

the HQV lattice. If β2 < 0, then a HQV lattice is the
ground state. If β2 > 0, then full quantum vortex lat-
tice is the ground state. In Appendix A, we show that
β2 = 0 in weak-coupling theories, so that the two lattice
structures are degenerate. In the rest of the paper, we
will focus on aspects that are unique to triplet supercon-
ductors in subsections V A and V B: the effects of the
screening fields f (4)

in , and the Zeeman-field.

(e)(d)

(c)(b)(a)

FIG. 1: Real space vortex lattice structure

A. The effects of screening and f
(4)
in

Here we look into the effect of screening. Ignoring the
Zeeman field (in weak-coupling theories, the Zeeman field
is vanishing in the clean limit), we have symmetry be-
tween C↑↑ and C↓↓, giving us

α̃1 = α̃2 ≡ α̃ =
2πK(Hc2 −H)

Φ0
〈|φ0|2〉 (5.10)

and

β̃1 = β̃2 ≡ β̃ =
(
β

2
− 8π3K2

Φ2
0

)
〈|φ0|4〉, (5.11)

which means that the free energy in Eq.(5.9) takes a sim-
pler form:

〈f̃〉 = −α̃(C2
↑↑ +C2

↓↓) + β̃(C4
↑↑ +C4

↓↓) + β̃3C
2
↑↑C

2
↓↓, (5.12)

with

β̃3 =
2γ
l2
〈|φ0|2(|φ̃0|2−|φ̃1|2)〉−

(
16π3K2

Φ2
0

+ β2

)
〈|φ0|2|φ̃0|2〉.

(5.13)
Now the free energy of Eq.(5.7) can be minimized by
choosing C2

↑↑ = C2
↓↓ = α̃/(2β̃ + β̃3) (which gives |∆̂| ∝

(Hc2 − H)1/2 as mentioned), giving us the free energy
expectation value

〈f〉 = −H
2

8π
− α̃2

2β̃ + β̃3

. (5.14)

Eqs.(5.13) and (5.14) allows for understanding the role
of both screening and f (4)

in . The screening affect the vor-
tex lattice structure through the dependence of terms
proportional to K2 in Eqs. (5.11) and (5.13) on the lat-
tice structure parameters ς, σ and τ . Since all quartic
expectation values depend on the lattice structure, the
lattice structure will be determined through minimizing
(2β̃ + β̃3). Since the magnitude of K2 term in Eq.(5.13)
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θ π/2

π/3

1 /2
1 /3

0

|τ|/|a1+a2|

1

|a2 |/ |a1 |

0 0.182 0.370 0.926
-(β2+16π3K2/Φ0

2)/β1

(a) (b) (c) (d) (e)

FIG. 2: Transition between different vortex lattice structures
when γ = 0. (a)-(e) label the vortex lattice structure shown
in Fig. (1).

is larger for full quantum vortices (Eq.(5.11) is not af-
fected), screening tend to disfavor HQV lattices, in line
with earlier observation for isolated HQV’s3. However,
since weak-coupling theories lie near the point β̃3 = 0 we
expect the screening effect will put the physical system at
a fine balance between interlacing lattices of HQV’s and
the ordinary Abrikosov vortex lattice. Hence it should
be possible to observe the transition between the two
phases upon small change of field and temperature. In-
deed, the interaction f

(4)
in plays this role. In particu-

lar, we numerically find that for γ > 0, then this term
tends to favor HQV lattices. A positive sign of γ occurs
when ρsp, ρs and this is to be expected in spin-triplet
superconductors3. Note, that unlike the other contri-
butions in β̃3, the contribution from f

(4)
in vanishes as

T → Tc. Consequently, this term can drive a field and
temperature dependent transition between a HQV lat-
tice and a full quantum lattice. Figures 1 and 2 show the
phase diagram for γ = 0. Note the similarity between the
calculated phase diagram and that found in the context
of two-component Bose condensates24,32.

B. The effects of the Zeeman term

For simplicity, we consider here the effect of Zeeman
field alone ignoring screening and setting γ = 0 (ignoring
f

(4)
in ). In the presence of Zeeman field, the free energy

Eq. (5.9) would have different coefficients for two quartic

terms:

〈f̃〉 = −α̃1C
2
↑↑− α̃2C

2
↓↓+ β̃(C4

↑↑+C4
↓↓) + β̃3C

2
↑↑C

2
↓↓ (5.15)

where α̃1 = α+K
l2 +Hκ̃, α̃2 = α+K

l2 −Hκ̃, β̃ = β1〈|φ0|4〉,
and β̃3 = −β2〈|φ0|2|φ̃0|2|2〉. The Zeeman field has two
main consequences: (i) it typically leads to two phase
transitions. In the first phase C↑↑ 6= 0 and C↓↓ = 0
and in the second phase, both components are non-zero.
The first phase is analogous to the 3He A1 phase, with
a non-unitary spin-triplet order parameter. However,
weak-coupling theories prefer unitary spin-triplet states
and this drives the second transition. (ii) In the frac-
tional vortex lattice phase where both components are
non-zero, the magnetic flux contained by isolated frac-
tional vortices is no longer a half-integral flux quanta.
Instead, two types of vortices each carry fractional flux
values of

Φi = Φ0
|ci|2

|c1|2 + |c2|2
. (5.16)

The double transition is possible if 2β̃ + β̃3 > 0 (note
again that weak-coupling theories yield β̃3 = 0 and β̃ >
0), there can be two transitions with a second transition
appearing at a temperature

Tc2 − Tc1 =
4β̃

2β̃ + β̃3

K +Hc2l
2κ̃

K1 −Hc2l2κ̃
Tc1. (5.17)

In the high temperature phase, the vortex lattice is
hexagonal and, at the second transition, the lattice will
remain hexagonal and the second component will either
coincide with first or be displaced half a hexagonal vortex
lattice vector from the first. As temperature is further
reduced below the second transition, the lattice will con-
tinuously deform, asymptotically approaching the phases
presented in the subsection V A (those shown in Fig. 2).
The resulting phase diagram is qualitatively shown in
Fig. 3.

Both consequences of the Zeeman field stem from
breaking the additional Z2 symmetry that is present
when α̃1 = α̃2. In general, the existence of fractional
vortices is the result of the U(1)×U(1) symmetry of the
free energy. When there is additional Z2 symmetry due
to α̃1 = α̃2, the flux contained in each fractional vortices
are restricted to be half the flux quantum since the two
components of the order parameter are no longer degen-
erate in a magnetic field. In Section VII, we will see that
this helps us distinguish a lattice of HQVs from a lattice
of full quantum vortex.

C. Chiral Triplet superconductors: lowest Landau
level solution

The chiral triplet superconductor with tetragonal sym-
metry, because of the inhomogeneous quadratic terms we
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FIG. 3: The role of the Zeeman field is to cause two transitions
and to change the HQV lattice phase to a a phase with two
types of fractional vortices in which the two fractional fluxes
sum to Φ0. Far below the second transition it is expected that
these fractions will be well approximated by 1/2.

have already seen in Eq. (3.12),

f
(2,s)
in = K1(|D∆s,+|2 + |D∆s,−|2)

+ K2[{(Dx∆s,+)(Dx∆s,−)∗−(Dy∆s,+)(Dy∆s,−)∗}/2
+ {(Dx∆s,−)(Dx∆s,+)∗−(Dy∆s,−)(Dy∆s,+)∗}/2
+ i{(Dx∆s,−)(Dy∆s,+)∗+(Dy∆s,−)(Dx∆s,+)∗}/2
− i{(Dx∆s,+)(Dy∆s,−)∗+(Dy∆s,+)(Dx∆s,−)∗}/2]

+ K4(|Dz∆s,+|2 + |Dz∆s,−|2), (5.18)

has a much more complicated quadratic free energy,

f
(2)
0 =

∑
s=↑↑,↓↓

[−α(|∆s,+|2 + |∆s,−|2) + f
(2,s)
in ], (5.19)

even when we exclude the Zeeman field and any spin-
orbit coupling.

Due to these inhomogenous quadratic terms, we cannot
put both chirality components in the lowest Landau level.
This is due to the presence of [(Dx∆s,σ)(Dy∆s,−σ)∗+c.c]
terms in f

(2,s)
in . The above quadratic free energy of

Eq. (5.19), together with Eq. (3.13) that gives us the
energy splitting between two chiralities, leads to the lin-
earized GL equation

αl2
(

∆s+

∆s−

)
=[

K1(1+2Π+Π−)−δK K2Π2
−

K2Π2
+ K1(1+2Π+Π−)+δK

](
∆s+

∆s−

)
.

(5.20)

However, a lowest Landau level solution that satisfies
Eq. (5.20) may still have the highest Hc2 and therefore
be possible15. This would lead to a nonzero order pa-
rameter for only one chirality - (∆s+,∆s−) = C(0, φ0) -
and requires δK < − K2

2
4K1

. In this case, the vortex ener-
getics of the chiral triplet superconductor is identical to

that of the nonchiral triplet superconductor, for inserting
this lowest Landau level solution into the full Gibbs free
energy leads us back to Eq. (5.4).

However, Eq. (5.20) can also give us a solution with
Landau level mixing; in this case, both ∆s+ and ∆s− are
nonzero. We will present discussion on this Landau level
mixing in Appendix B.

VI. ROLE OF SPIN-ORBIT COUPLING

A. Generic Case

If the material has orthogonal or tetragonal symme-
try (though not necessarily true for hexagonal symmetry,
which is discussed in the next subsection), then there will
exist spin-orbit coupling terms of the type

ε∆↑↑ ∆∗↓↓. (6.1)

Such terms break the U(1) × U(1) symmetry and con-
sequently isolated fractional flux vortices are no longer
stable. Nevertheless, a fractional flux quantum vortex
lattice can still exist, provided that the separation be-
tween vortices is less than ξso defined through ξ2so = K/ε.

For completeness, we write here the spin-orbit coupling
terms that appear in the context of a chiral spin-triplet
superconductor. While we do not include these terms in
calculations, they may be useful in other contexts. Due
to the tetragonal C4 symmetry, homogeneous spin-orbit
coupling terms should be invariant under the transfor-
mation

(∆↑↑,+,∆↑↑,−,∆↓↓,+,∆↓↓,−)→
(−∆↑↑,+,∆↑↑,−,∆↓↓,+,−∆↓↓,−).

To the quadratic order, this condition is satisfied by34

f
(2)
SO = ε1(|∆↑↑,+|2+|∆↓↓,−|2−|∆↑↑,−|2−|∆↓↓,+|2)

+ ε2[(∆↑↑,−)(∆↓↓,+)∗ + c.c.]
+ ε3[(∆↑↑,+)(∆↓↓,−)∗ + c.c.]. (6.2)

We note here that εi’s can be estimated from the recent
ARPES data20,21.

B. Hexagonal Materials

For hexagonal materials, there exist spin-triplet pair-
ing states for which no such terms such as that in the
above equation appear. These states belong to the two-
dimensional representations labelled Γ−5 and Γ−6 in the
review article by Sigrist and Ueda25. Consequently, these
materials need to be considered more carefully.

We will now show that in hexagonal materials, a little
away from Hc2, spin-orbit coupling does not break U(1)×
U(1) symmetry. For hexagonal materials, the only term
that exists in the GL free energy that is due to spin-orbit
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coupling is (note that the inclusion of this term gives rise
the complete free energy found that is found in Sigrist
and Ueda for the Γ−5,6 representations):

fSO = Kso

{
(Dx∆↓↓)(Dx∆↑↑)∗ − (Dy∆↓↓)(Dy∆↑↑)∗

+ (Dx∆↑↑)(Dx∆↓↓)∗ − (Dy∆↓↓)(Dy∆↑↑)∗

− i[(Dx∆↓↓)(Dy∆↑↑)∗ + (Dy∆↓↓)(Dx∆↑↑)∗]

+ i[(Dx∆↑↑)(Dy∆↓↓)∗ + (Dy∆↑↑)(Dx∆↓↓)∗]
}
/2

(6.3)

With the field along the c-axis, the solution to the
quadratic problem satisfies

αl2

K

(
∆↑↑
∆↓↓

)
=
(

1 + 2N −Kz K̃soΠ2
−

K̃soΠ2
+ 1 + 2N +Kz

)(
∆↑↑
∆↓↓

)
where Kz = K̃Hl2

K and K̃so = Kso/K. All the eigenstates
for this problem can be found analytically30. Typically,
|K̃so| << 1, so we will be interested in the eigenstates
that contain the lowest Landau level (which will minimize
the free energy when K̃so = 0). The two relevant eigen-
states that we wish to keep are: (∆↑↑,∆↓,↓) = (φ0, εφ2)
and (∆↑↑,∆↓,↓) = (0, φ0) where ε is proportional to
K̃so. Note that unlike in the subsection V C we can
keep both solutions because while we examined H ∼ Hc2

in that subsection, we are a little away from Hc2 in
this subsection. We therefore write ∆↑↑ = γ1φ0 and
∆↓↓ = γ1εφ2 + γ2φ̃0 to include these two eigenstates.
For simplicity, we ignore screening and the Zeeman field
to find the following free energy

〈f〉 = −(1−H/Hc2,1)|γ1|2 − (1−H/Hc2,2)|γ2|2

+β1[|γ1|4〈|φ0|4〉+ 〈|γ1εφ2 + γ2φ̃0|4〉]
−β2〈|γ1φ0|2|γ1εφ2 + γ2φ̃0|2〉 (6.4)

where Hc2,i (i = 1, 2) is the upper critical field for eigen-
state i. Since spin-orbit coupling is expected to be small,
this implies that ε << 1, so keeping to linear order in ε
yields:

〈f〉 = −(1−H/Hc2,1)|γ1|2 − (1−H/Hc2,2)|γ2|2

+β1〈|φ0|4〉(|γ1|4 + |γ2|4) + β2〈|φ0|2|φ̃0|2〉|γ1|2|γ2|2

+ε[β1|γ2|2γ2γ
∗
1 〈|φ̃0|2φ̃0φ

∗
2〉+ c.c]

−ε[β2|γ1|2γ1γ
∗
2 〈|φ0|2φ2φ̃

∗
0〉+ c.c] (6.5)

Without the last two terms, this theory is the same
as that found for non-chiral spin-triplet superconductors
with a Zeeman field but without any spin-orbit coupling.
At the upper critical field, one of the two components γ1

or γ2 order and the vortex lattice will be hexagonal (this
conclusion is correct even when including terms that are
second order in ε). As the temperature or magnetic field
is reduced, the last two terms in Eq. (6.5) can play an
important role. These two terms break the U(1)× U(1)
symmetry of the theory and therefore will tend to remove

any HQV lattice phases. However, the spatial averages
〈|φ̃0|2φ̃0φ

∗
2〉 and 〈|φ0|2φ2φ̃

∗
0〉 vanish for a hexagonal vor-

tex lattice (loosely speaking, this follows from noting that
φn picks up a factor einφ under a rotation about ẑ and
that a hexagonal vortex lattice is symmetric under rota-
tions of π/3) . The hexagonal symmetry of the materials
conspires to remove this form of U(1) × U(1) symmetry
breaking and the HQV lattice structures are still possible
(indeed the theory is the same as that given for the non-
chiral spin-triplet superconductors with a Zeeman field,
but without spin-orbit coupling). Note that if τ 6= 0
(signaling the existence of the fractional vortex lattice),
then 〈|φ̃0|2φ̃0φ

∗
2〉= 〈|φ0|2φ2φ̃

∗
0〉=0 for any lattice geome-

try. Consequently, the last two terms of Eq. (6.5)) do
not play any role in the theory of the fractional vortex
lattices.

It is reasonable to ask if there are any other U(1)×U(1)
symmetry breaking terms that we have neglected in the
above analysis. Indeed there is one that appears at or-
der ε2: ε2β1γ

2
1(γ2

2)∗〈φ2
2(φ̃2

0)∗〉. This term allows for the
existence of a fractional vortex lattice phase subject to
the constraint that τ is half a vortex lattice translation
vector30. There are also U(1)× U(1) that appear at or-
der ε3, but these vanish for the same reason as the order
ε term. Consequently, the spin-orbit coupling for the
hexagonal two-dimensional representations plays essen-
tially the same role as the Zeeman field.

VII. OBSERVATION OF THE VORTEX
LATTICE

The best way to determine both the vortex lattice
structure and the vortex type is to observe the magnetic
field distribution through the small angle neutron scat-
tering. What we will see in this experiment is the Fourier
transform f(G) of the screening field of Eq. (5.8),

hs(r) = (
8π2K

Φ0
− 4πκ̃)C2

↑↑|φ0(r)|2

+ (
8π2K

Φ0
+ 4πκ̃)C2

↓↓|φ̃0(r)|2 (7.1)

- that is hs(r) =
∑

G f(G) exp(iG · r), where G is the
reciprocal lattice vectors of the vortex lattice in the unit
of the inverse magnetic length.

The characteristic feature of the vortex lattice with
half-vortices in the small angle neutron scattering exper-
iment is the modulation of the Bragg peaks. The form
factor of the Bragg peaks would be the f(G) of the last
paragraph. Using

|φ0(r)|2 =
∑
G

(−1)m1+m2+m1m2e−G2/2 (7.2)

where G = m1G1 +m2G2, and Gi’s are the basis vector
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FIG. 4: The contour plots of the screening field in the real (that is, position) space for different types of vortex lattices: (a)
a lattice of ordinary Abrokosov (full quantum) vortices (b) a HQV lattice (c) a lattice of fractional vortices in the presence of
Zeeman field. The position is measured in units of magnetic length. Note the halving of the unit cell in going from the HQV
lattice to the full quantum vortex lattice. When the Zeeman field is added in, the periodicity is that of the full quantum lattice,
though the vortex lattice unit cell now has additional structure due to appearance of fractional flux at both the corners and
center of the unit cell.

of the reciprocal lattice, we obtain the form factor

f(G) = (−1)m1+m2+m1m2e−G
2/2[(

8π2K

Φ0
− 4πκ̃)|C↑↑|2

+ (
8π2K

Φ0
+ 4πκ̃)|C↓↓|2eiG·τ ]. (7.3)

This equation implies that the intensity |f(G)|2 for our
Bragg peaks does not come out same for all G’s. This
is because for almost all vortex lattice structure (the
single exception being not very robuts honeycomb lat-
tice) τ is half a vortex translation vector so that we have
eiG·τ = −1 for half of G’s and eiG·τ = 1 for the other
half. When there is no Zeeman field, eiG·τ = −1 peaks
disappear completely; natural given that magnetic field
cannot distinguish the spin up and the spin down HQV’s
at all and thus sees the unit lattice vector halved. How-
ever, when the Zeeman field breaks down the Z2 symme-
try between the spin up-up pairs and down-down pairs,
we now see a secondary peak for eiG·τ = −1 as shown on
Fig. (4).

Another promising direction for detecting fractional
vortex lattice would be to use spin-polarized STM to
probe the vortex cores. The key point is that the low
energy quasi-particle spins have opposite polarization in
the two different HQV’s. This is because for half of HQV
cores, we have ∆↑↑ = 0 and ∆↓↓ 6= 0, so that only spin-
down quasi-particles are gapped. On the other hand, for
the other half of HQV cores, only spin-up quasi-particles
are gapped. This spin-polarization of the subgap core
modes should be readily detected through spin-polarized
STM.

VIII. CONCLUSION

In this paper we explored various possibilities for frac-
tional vortex lattice structures in spin triplet supercon-

ductors starting from the most general from of Gibbs
free energy that is allowed by the symmetry of the or-
der parameter and that of the lattice symmetries rel-
evant for three candidate spin triplet superconductors,
namely single layer ruthenate Sr2RuO411,12 cobaltate
NaxCoO2 · yH2O13 and organic14 (TMTSF)2ClO4. The
focus of our analysis was on the role of aspects unique
to triplet superconductors, such as (i) Cooper pair Zee-
man field, (ii) spin-orbit coupling, (iii) screening, and (iv)
interaction effects in the energetics of the vortex lattice
structure. (i) The Cooper pair Zeeman field breaks a Z2

symmetry of the free energy whose presence constrains
the fractional vortices to contain half integral flux quanta.
The resulting structure is that of two interlacing lattices
of vortices containing arbitrary fraction of flux quanta
that adds up to one flux quanta. Such fractional vortex
lattices will have interesting field distributions in vor-
tex lattice unit cell due to internal structures within the
unit cell. (ii) The effect of spin-orbit coupling is lattice
symmetry specific. In hexagonal lattices systems such as
cobaltates NaxCoO2·yH2O, spin-orbit coupling has the
same effect as the Cooper pair Zeeman field, support-
ing fractional vortex lattices. However, for tetragonal or
orthorhombic lattices, sufficiently strong spin-orbit cou-
pling generally favors ordinary Abrikosov vortex lattice
over HQV’s. However, such an effect is relatively mild
in a dense vortex lattice, provided that the separation
between the HQV vortices is less that a length set by the
spin-orbit coupling. (iii) The Meissner screening effec-
tively generates attraction between two HQV’s with op-
posite winding of the spin phase and weakly destablizes
the HQV’s. (iv) The interaction effects clearly support
energetic stability of HQV’s within the GL theory. The
interaction effects represented by inhomogeneous (unique
to triplet superconductors) quartic terms can drive dif-
ference in effective superfluid stiffness ρsp < ρs which
stabilizes HQV’s in the London limit. When the above
effects are put together, all weak coupling theories we
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examined appears to lie at the point of fine balance be-
tween ordinary Abrikosov vortex lattice and lattices of
HQV’s. Hence it should be possible to observe transi-
tions between these structures with small changes of pa-
rameters. This further motivates experimental search for
these fractional vortex lattices. We have sketched possi-
ble routes for such searches using neutron scattering or
spin polarized STM.
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APPENDIX A: GINZBURG LANDAU ENERGY:
FOURTH ORDER TERMS FROM

WEAK-COUPLING THEORY

The GL free energy can be determined in the weak-
coupling limit. In the context of the existence of 1/2 qv
lattice structures, the result for the fourth order terms
in the free energy turns out to be highly relevant. As
shown here, this reveals that weak-coupling theories sit
at a point in which the 1/2 qv and the full qv lattices
are degenerate. This indicates that interactions beyond
the weak-coupling limit are essential to determining the
which lattice structure actually appears (screening plays
a role here as well as shown earlier).

The portion of the free energy we calculate here is given
in Eq. 3.6

f
(4)
hom = β1(

∑
i

|∆i|2)2 + β2|∆↑↑|2|∆↓↓|2. (A1)

The weak-coupling limit (without spin-orbit coupling)
yields (this follows from Ref. 25)

f
(4)
hom ∝ 〈|d(k)|4〉+ 〈q2(k)〉 (A2)

where q(k) = id(k)× d∗(k), 〈h(k)〉 means average h(k)
over all k on the Fermi surface, and the proportional-
ity constant can be found but it is not important for
our considerations. When q is non-zero, then the super-
conducting state is called non-unitary. In weak-coupling
theories, non-unitary states cost energy and typically do
not appear. Using the gap structure of Eq. 2.2, we find

f
(4)
hom ∝ 〈|f(k)|4〉[(|∆↑↑|2 + |∆↓↓|2)2 + (|∆↑↑|2 − |∆↓↓|2)]

= 2〈|f(k)|4〉(|∆↑↑|4 + |∆↓↓|4). (A3)

This implies that β2 = −2β1, independent of the shape
of the Fermi surface. The lack of interaction between the

two components of the gap function leads to the degener-
acy between the 1/2 qv and the full qv lattice structures.

APPENDIX B: RUTHENATE - THE LANDAU
LEVEL MIXING

We show here how we can have the Landau level mix-
ing in a chiral triplet superconductor. The case we are
considering here is in the weak pairing regime and has
tetragonal crystalline symmetry and a cylindrical Fermi
surface. Let us consider again the linearized GL equa-
tion:

l2
(

∆s+

∆s−

)
=
K

α

(
1 + 2Π+Π− Π2

−
Π2

+ 1 + 2Π+Π−

)(
∆s+

∆s−

)
,

(B1)
where s =↑↑, ↓↓. (Note that, though otherwise same as
Eq. (5.20), we now ignore the energy splitting between
the ± chiralities and set K1 = K2 = K.) This matrix
equation as a solution in the form(

∆s+

∆s−

)
= Cs

(
φ0

−δφ2

)
, (B2)

where δ =
√

3−
√

2.
When we ignore the Zeeman field, much of the vortex

lattice energetics of the lowest Landau level case remains
valid with the Landau level mixing. For instance, the
two main formulas of Section V. A, Eqs.(5.12),

〈f̃〉 = −α̃(C2
↑↑ + C2

↓↓) + β̃(C4
↑↑ + C4

↓↓) + β̃3C
2
↑↑C

2
↓↓, (B3)

and (5.14)),

〈f〉 = −H
2

8π
− α̃2

2β̃ + β̃3

, (B4)

remains valid, mainly due to |∆̂| ∝ (Hc2 − H)1/2. This
means we can still calculate hs, solely from quadratic
terms. For quadratic terms, we simply have two copies
(for s =↑↑ and ↓↓) of what was obtained for the case of
d = (kx + iky)ẑ by one of us18, we can use the formula
for hs for that case:

hs =
8π2K

Φ0
[C2
↑↑{(1− 3δ/

√
2 + 2δ2)|φ0|2

+ (2δ2 − δ/
√

2)|φ1|2 + δ2|φ2|2}
+ C2

↓↓{(1− 3δ/
√

2 + 2δ2)|φ̃0|2

+ (2δ2 − δ/
√

2)|φ̃1|2 + δ2|φ̃2|2}]. (B5)

The spatial average of this equation is still proportional
to (C2

↑↑ + C2
↓↓) just like Eq. (5.8). Also, α̃ ∝ (Hc2 −H)

still stands:

α̃ =
2πK(Hc2 −H)

Φ0
[(1− 3δ/

√
2 + 2δ2)〈|φ0|2〉

+ (2δ2 − δ/
√

2)〈|φ1|2〉+ δ2〈|φ2|2〉]. (B6)
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However, the formula for 2β̃+ β̃3 are much more com-
plicated here, especially when we include all terms of
Eqs. (3.14) and (3.15) for these coefficients. For sake
of convenience, instead of directly writing down β̃ and
β̃3, we will list h2

s (terms that are proportional to K2),

f
(4)
hom (terms involving coefficients of Eq.(3.14)), and f (4)

in
(terms involving coefficients of Eq. (3.15)); to obtain
2β̃ + β̃3, we can use the relation

2β̃ + β̃3 = f
(4)
hom + f

(4)
in −

h2
s

8π
. (B7)

The following is the full listing of h2
s/8π, f (4)

hom, and f
(4)
in

(note that we have set β3 of Eq. (3.14) to be zero):

h2
s

8π
=

8π3K2

Φ2
0

[(1− 3δ/
√

2 + 2δ2)2〈|φ0|4〉

+ 2(2δ2 − δ/
√

2)(1− 3δ/
√

2 + 2δ2)〈|φ0|2|φ1|2〉
+ 2δ2(1− 3δ/

√
2 + 2δ2)〈|φ0|2|φ2|2〉

+ (2δ2 − δ/
√

2)2〈|φ1|4〉
+ 2δ2(2δ2 − δ/

√
2)〈|φ1|2|φ2|2〉+ δ4〈|φ2|4〉

+ (1− 3δ/
√

2 + 2δ2)2〈|φ0|2|φ̃0|2〉
+ 2(2δ2 − δ/

√
2)(1− 3δ/

√
2 + 2δ2)〈|φ0|2|φ̃1|2〉

+ 2δ2(1− 3δ/
√

2 + 2δ2)〈|φ0|2|φ̃2|2〉
+ (2δ2 − δ/

√
2)2〈|φ1|2|φ̃1|2〉

+ 2δ2(2δ2 − δ/
√

2)〈|φ1|2|φ̃2|2〉
+ δ4〈〈|φ2|2|φ̃2|2〉], (B8)

f
(4)
hom = β1(〈|φ0|4〉+ δ4〈|φ2|4〉) + 2β′1δ

2〈|φ0|2〉〈|φ2|2〉
− β2(〈|φ0|2|φ̃0|2 + δ4〈|φ2|2|φ̃2|2〉)
− 2δ2β′2〈|φ0|2|φ̃2|2〉, (B9)

and

f
(4)
in =

2γ
l2

(〈|φ0|2|φ̃0|2〉 − 〈|φ0|2|φ̃1|2〉

+ 3δ2〈|φ0|2|φ̃2|2〉 − 3δ2〈|φ0|2|φ̃3|2〉)

+
2γ′

l2
(3δ2〈|φ0|2|φ̃2|2〉 − 3δ2〈|φ0|2|φ̃3|2〉

+ 2δ4〈|φ0|2|φ̃1|2〉+ δ4〈|φ0|2|φ̃2|2〉 − 3δ4〈|φ0|2|φ̃3|2〉
+ 2δ4〈|φ1|2|φ̃1|2〉+ δ4〈|φ1|2|φ̃2|2〉 − 3δ4〈|φ1|2|φ̃3|2〉
+ 3δ4〈|φ2|2|φ̃2|2〉 − 3δ4〈|φ2|2|φ̃3|2〉). (B10)

APPENDIX C: CORRELATION FUNCTIONS

In calculating 〈f (4)
in 〉, note

(Df) · (Dg)∗ =
1
l2

[(Π+f)(Π+g)∗+ (Π−f)(Π−g)∗] (C1)

and

Π+φn =
√
n+ 1φn+1

Π−φn =
√
nφn−1. (C2)

Together with partial integration

〈(Π+φn)φ̃∗mφ̃pφ
∗
q〉 = 〈φn(Π−φ̃m)∗φ̃pφ∗q〉

− 〈φnφ̃∗m(Π+φ̃p)φ∗q〉

+ 〈φnφ̃∗mφ̃p(Π−φq)∗〉, (C3)

these equation gives

1
l2
〈φ∗0φ̃0(Dφ0) · (Dφ̃0)∗〉 = 〈|φ0|2|φ̃0|2〉 − 〈|φ0|2|φ̃1|2〉

1
l2
〈φ∗0φ̃2(Dφ0) · (Dφ̃2)∗〉 = 〈|φ0|2|φ̃2|2〉 − 〈|φ0|2|φ̃3|2〉

1
l2
〈φ∗2φ̃2(Dφ2) · (Dφ̃2)∗〉 = 2〈|φ0|2|φ̃1|2〉+ 〈|φ0|2|φ̃2|2〉

+ 2〈|φ1|2|φ̃1|2〉+ 〈|φ1|2|φ̃2|2〉
− 3〈|φ0|2|φ̃3|2〉 − 3〈|φ1|2|φ̃3|2〉
+ 3〈|φ2|2|φ̃2|2〉 − 3〈|φ2|2|φ̃3|2〉.

(C4)

These can be evaluated using

〈|φp|2|φq|2〉
〈|φ0|2〉2

=
∑
r,s

L0
p(k

2
rs/2)L0

q(k
2
rs/2)e−k

2
rs/2,

〈|φp|2|φ̃q|2〉
〈|φ0|2〉2

=
∑
r,s

L0
p(k

2
rs/2)L0

q(k
2
rs/2)e−k

2
rs/2 cos(krs · τ )

(C5)

where L0
n is a Laguerre polynomial of nth order and krs =

(
√

2πσr,
√

2π/σ(s− ςr))
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